£¨2013•Õ¢±±Çø¶þÄ££©ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÇúÏßC1Ϊµ½¶¨µãF£¨
2
2
£¬
2
2
£©µÄ¾àÀëÓëµ½¶¨Ö±Ïßl1£ºx+y+
2
=0µÄ¾àÀëÏàµÈµÄ¶¯µãPµÄ¹ì¼££¬ÇúÏßC2ÊÇÓÉÇúÏßC1ÈÆ×ø±êÔ­µãO°´Ë³Ê±Õë·½ÏòÐýת45¡ãÐγɵģ®
£¨1£©ÇóÇúÏßC1Óë×ø±êÖáµÄ½»µã×ø±ê£¬ÒÔ¼°ÇúÏßC2µÄ·½³Ì£»
£¨2£©¹ý¶¨µãM£¨m£¬0£©£¨m£¾0£©µÄÖ±Ïßl2½»ÇúÏßC2ÓÚA¡¢BÁ½µã£¬µãNÊǵãM¹ØÓÚÔ­µãµÄ¶Ô³Æµã£®Èô
AM
=¦Ë
MB
£¬Ö¤Ã÷£º
NM
¡Í£¨
NA
-¦Ë
NB
£©£®
·ÖÎö£º£¨1£©ÉèP£¨x£¬y£©£¬¸ù¾Ýµãµ½Ö±ÏߵľàÀ빫ʽºÍÁ½µã¼äµÄ¾àÀ빫ʽ£¬½¨Á¢¹ØÓÚx¡¢yµÄ·½³Ì²¢»¯¼òÕûÀí£¬¼´¿ÉµÃµ½ÇúÏßC1µÄ·½³Ì£®·Ö±ðÈ¡x=0ºÍy=0½â³öÇúÏßC1ÔÚÖáÉϵĽؾ࣬¼´¿ÉÇúÏßC1Óë×ø±êÖáµÄ¸÷½»µãµÄ×ø±ê£®ÔÙÓÉÇúÏßÊÇÒÔF£¨
2
2
£¬
2
2
£©Îª½¹µã£¬Ö±Ïßl1£ºx+y+
2
=0Ϊ׼ÏßµÄÅ×ÎïÏߣ¬½«Æä˳ʱÕë·½ÏòÐýת45¡ãµÃµ½µÄÅ×ÎïÏß½¹µãΪ£¨1£¬0£©£¬×¼ÏßΪx=-1£¬¿ÉµÃÇúÏßC2µÄ·½³ÌÊÇy2=4x£»
£¨2£©ÉèA£¨x1£¬y1£©¡¢B£¨x2£¬y2£©£¬Ö±Ïßl2µÄ·½³ÌΪy=k£¨x-m£©£¬ÓëÅ×ÎïÏßy2=4xÏûÈ¥x£¬µÃy2-
4
k
y-4m=0£¬¿ÉµÃy1y2=-4m£®ÉèN£¨-m£¬0£©£¬ÓÉ
AM
=¦Ë
MB
Ëã³ö¦Ë=-
y1
y2
£¬½áºÏÏòÁ¿×ø±êÔËË㹫ʽµÃµ½
NA
-¦Ë
NB
¹ØÓÚx1¡¢x2¡¢¦ËºÍmµÄ×ø±êʽ£¬´úÈë
NM
•£¨
NA
-¦Ë
NB
£©²¢»¯¼ò£¬ÕûÀí¿ÉµÃ
NM
•£¨
NA
-¦Ë
NB
£©=0£¬´Ó¶øµÃµ½¶ÔÈÎÒâµÄ¦ËÂú×ã
AM
=¦Ë
MB
£¬¶¼ÓÐ
NM
¡Í£¨
NA
-¦Ë
NB
£©£®
½â´ð£º½â£¨1£©ÉèP£¨x£¬y£©£¬ÓÉÌâÒâÖªÇúÏßC1ΪÅ×ÎïÏߣ¬²¢ÇÒÓÐ
(x-
2
2
)2+(y-
2
2
)2
=
|x+y+
2
|
2
£¬
»¯¼òµÃÅ×ÎïÏßC1µÄ·½³ÌΪ£ºx2+y2-2xy-4
2
x-4
2
y=0£®
Áîx=0£¬µÃy=0»òy=4
2
£»ÔÙÁîy=0£¬µÃx=0»òx=4
2
£¬
ËùÒÔ£¬ÇúÏßC1Óë×ø±êÖáµÄ½»µã×ø±êΪ£¨0£¬0£©¡¢£¨0£¬4
2
£©ºÍ£¨4
2
£¬0£©£®
µãF£¨
2
2
£¬
2
2
£©µ½l1£ºx+y+
2
=0µÄ¾àÀëΪ
|
2
2
+
2
2
+
2
|
2
=2£¬
ËùÒÔC2ÊÇÒÔ£¨1£¬0£©Îª½¹µã£¬ÒÔx=-1Ϊ׼ÏßµÄÅ×ÎïÏߣ¬Æä·½³ÌΪ£ºy2=4x£®
£¨2£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÓÉÌâÒâÖªÖ±Ïßl2µÄбÂÊk´æÔÚÇÒ²»ÎªÁ㣬
ÉèÖ±Ïßl2µÄ·½³ÌΪy=k£¨x-m£©£¬´úÈëy2=4xµÃ
y2-
4
k
y-4m=0£¬¿ÉµÃy1y2=-4m£®
ÓÉ
AM
=¦Ë
MB
£¬µÃ£¨m-x1£¬-y1£©=¦Ë£¨x2-m£¬y2£©£¬¿ÉµÃ¦Ë=-
y1
y2
£¬
¶øN£¨-m£¬0£©£¬¿ÉµÃ
NA
-¦Ë
NB
=£¨x1+m£¬y1£©-¦Ë£¨x2+m£¬y2£©=£¨x1-¦Ëx2+£¨1-¦Ë£©m£¬y1-¦Ëy2£©
¡ß
NM
=£¨2m£¬0£©£¬
¡à
NM
•£¨
NA
-¦Ë
NB
£©=2m[x1-¦Ëx2+£¨1-¦Ë£©m]=2m[
y12
4
+
y1
y2
-
y22
4
+£¨1+
y1
y2
£©m]
=2m£¨y1+y2£©•
y1y2+4m
4y2
=2m£¨y1+y2£©•
-4m+4m
4y2
=0
¡à¶ÔÈÎÒâµÄ¦ËÂú×ã
AM
=¦Ë
MB
£¬¶¼ÓÐ
NM
¡Í£¨
NA
-¦Ë
NB
£©£®
µãÆÀ£º±¾Ìâ¸ø³ö¶¯µãµÄ¹ì¼££¬Çó¹ì¼£¶ÔÓ¦µÄ·½³Ì²¢ÌÖÂÛÓÉÇúÏß²úÉúµÄÏòÁ¿»¥Ïà´¹Ö±µÄÎÊÌ⣬×ÅÖØ¿¼²éÁ˵㵽ֱÏߵľàÀ빫ʽ¡¢Æ½ÃæÄÚÁ½µãµÄ¾àÀ빫ʽ¡¢Ò»Ôª¶þ´Î·½³Ì¸ùÓëϵÊýµÄ¹ØÏµºÍÆ½ÃæÏòÁ¿ÊýÁ¿»ýµÄ×ø±êÔËËãµÈ֪ʶ£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Õ¢±±Çø¶þÄ££©ÉèΪÐéÊýµ¥Î»£¬¼¯ºÏA={1£¬-1£¬i£¬-i}£¬¼¯ºÏB={i10£¬1-i4£¬(1+i)(1-i)£¬
1+i1-i
}
£¬ÔòA¡ÉB=
{-1£¬i}
{-1£¬i}
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Õ¢±±Çø¶þÄ££©ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÔÏòÁ¿
a
=£¨a1£¬a2£©£¬
b
=£¨b1£¬b2£©ÎªÁÚ±ßµÄÆ½ÐÐËıßÐεÄÃæ»ýΪ
|a1b2-b1a2|
|a1b2-b1a2|
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Õ¢±±Çø¶þÄ££©£¨1+2x£©3£¨1-x£©4Õ¹¿ªÊ½ÖÐx6µÄϵÊýΪ
-20
-20
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Õ¢±±Çø¶þÄ££©¹ýÔ­µãÇÒÓëÏòÁ¿
n
=(cos(-
¦Ð
6
)£¬sin(-
¦Ð
6
))
´¹Ö±µÄÖ±Ïß±»Ô²x2+y2-4y=0Ëù½ØµÃµÄÏÒ³¤Îª
2
3
2
3
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Õ¢±±Çø¶þÄ££©Éè0£¼¦È£¼
¦Ð
2
£¬a1=2cos¦È£¬an+1=
2+an
£¬ÔòÊýÁÐ{an}µÄͨÏʽan=
2cos
¦È
2n-1
2cos
¦È
2n-1
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸