精英家教网 > 高中数学 > 题目详情
设复数z=(m2-2m-3)+(m2+3m+2)i,试求实数m的取值,使得(1)z是纯虚数;(2)z对应的点位于复平面的第二象限.
分析:(1)当复数是一个纯虚数时,需要实部等于零而虚部不等于0,得到关于m的方程组,解方程组即可.
(2)复平面内第四象限的点对应的复数,得到实部为正和虚部为负得出不等关系,最后解不等式即可.
解答:解:(1)复数是一个纯虚数,实部等于零而虚部不等于0
由 
m2-2m-3=0
m2+3m+2≠0
m=-1或m=3
m≠-1且m≠-2
,得m=3.(6分)
(2)当复数对应的点在第二象限时,
m2-2m-3<0
m2+3m+2>0
-1<m<3
m>-1或m<-2

得-1<m<3.(12分)
点评:本题考查复数代数表示法及其几何意义、复数的意义和基本概念,解题的关键是整理出复数的代数形式的标准形式,针对于复数的基本概念得到实部和虚部的要满足的条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设复数z=(m2-3m+2)+(2m2-5m+2)i(m∈R),
(Ⅰ)若z是实数,求m的值;
(Ⅱ)若z对应的点位于复平面第四象限,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设复数z=(m2-2m-3)+(m2+3m+2)i,其中m∈R.
(Ⅰ)若z是纯虚数,求m的值.
(Ⅱ)若z的对应点在直线y=x上,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设复数z=lg(m2-2m-2)+(m2+3m+2)i,试求实数m取何值时,(1)z是纯虚数;(2)z是实数;(3)z对应的点位于复平面的第二象限.

查看答案和解析>>

科目:高中数学 来源: 题型:

设复数z=lg(m2-2m-2)+(m2+3m+2)i,试求实数m取何值时,z是纯虚数?

查看答案和解析>>

同步练习册答案