精英家教网 > 高中数学 > 题目详情
已知两点A(x1,y1),B(x2,y2),P(x,y)是直线AB上一点,且满足(t≠0,t≠1),则点P分所成的比是(    )

A.       B.    C.        D.

B

解:x=(1-t)x1+tx2=t(x2+)=

同理y=(1-t)y1+ty2==,故选B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点A(x1,x12)、B(x2,x22)是函数y=x2的图象上任意不同两点,依据图象可知,线段AB总是位于A、B两点之间函数图象的上方,因此有结论
x
2
1
+
x
2
2
2
>(
x1+x2
2
)2
成立.运用类比思想方法可知,若点A(x1,lgx1)、B(x2,lgx2)是函数y=lgx(x∈R+)的图象上的不同两点,则类似地有
 
成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A (x1,y1);B(x2,y2)是定义在区间M上的函数y=f(x)的图象任意不重合两点,直线AB的斜率总小于零,则函数y=f(x) 在区间M上总是(  )

查看答案和解析>>

科目:高中数学 来源:蚌埠二模 题型:填空题

已知点A(x1,x12)、B(x2,x22)是函数y=x2的图象上任意不同两点,依据图象可知,线段AB总是位于A、B两点之间函数图象的上方,因此有结论
x21
+
x22
2
>(
x1+x2
2
)2
成立.运用类比思想方法可知,若点A(x1,lgx1)、B(x2,lgx2)是函数y=lgx(x∈R+)的图象上的不同两点,则类似地有______成立.

查看答案和解析>>

科目:高中数学 来源:2010-2111学年安徽省合肥一中、六中、168中学高二(下)期末数学试卷(文科)(解析版) 题型:解答题

已知函数f(x)=2x-2lnx
(Ⅰ)求函数在(1,f(1))的切线方程
(Ⅱ)求函数f(x)的极值
(Ⅲ)对于曲线上的不同两点P1(x1,y1),P2(x2,y2),如果存在曲线上的点Q(x,y),且x1<x<x2,使得曲线在点Q处的切线l∥P1P2,则称l为弦P1P2的陪伴切线.已知两点A(1,f(1)),B(e,f(e)),试求弦AB的陪伴切线l的方程.

查看答案和解析>>

同步练习册答案