精英家教网 > 高中数学 > 题目详情
(1)研究函数f(x)=lnx-x的单调区间与极值.
(2)试探究f(x)=lnx-ax(a∈R)单调性.
(1)f′(x)=
1
x
-1=
1-x
x

令f′(x)<0得x>1
令f′(x)>0得0<x<1
所以函数f(x)=lnx-x的单调减区间是(1,+∞),单调递增区间是(0,1).
∴f(x)在x=1处取得极大值-1,无极大值.
(2)f′(x)=
1
x
-a…(2分)
(Ⅰ)∵x>0,所以当a≤0时,f′(x)=
1
x
-a>0,f(x)在(0,+∞)是增函数…(4分)
当a>0时,f(x)在(0,
1
a
)上f′(x)=
1
x
-a>0,f(x)在(
1
a
,+∞)上f′(x)=
1
x
-a<0,
故f(x)在(0,
1
a
)上是增函数,f(x)在(
1
a
,+∞)上是减函数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)研究函数f(x)=lnx-x的单调区间与极值.
(2)试探究f(x)=lnx-ax(a∈R)单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)研究函数f(x)=lnx-x的单调区间与极值.
(2)试探究f(x)=lnx-ax(a∈R)单调性.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省深圳市宝安区高二(下)期末数学试卷(文科)(解析版) 题型:解答题

(1)研究函数f(x)=lnx-x的单调区间与极值.
(2)试探究f(x)=lnx-ax(a∈R)单调性.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省深圳市宝安区高二(上)期末数学试卷(文科)(解析版) 题型:解答题

(1)研究函数f(x)=lnx-x的单调区间与极值.
(2)试探究f(x)=lnx-ax(a∈R)单调性.

查看答案和解析>>

同步练习册答案