精英家教网 > 高中数学 > 题目详情
在数列{an}中,an=2n+3,前n项和Sn=an2+bn+c,n∈N*,其中a,b,c为常数,则a-b+c=( )
A.-3
B.-4
C.-5
D.-6
【答案】分析:把n等于1代入an=2n+3求出数列的首项,然后利用等差数列的前n项和的公式根据首项和第n项表示出前n项的和,得到前n项的和为一个关于n的多项式,根据多项式相等时,各对应的系数相等即可求出a,b,c的值,即可求出a-b+c的值.
解答:解:令n=1,得到a1=2+3=5,
所以
而Sn=an2+bn+c,则an2+bn+c=n2+4n,
所以a=1,b=4,c=0,
则a-b+c=1-4+0=-3.
故选A
点评:此题考查学生灵活运用等差数列的前n项和的公式化简求值,掌握多项式相等时所满足的条件,是一道综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,
a
 
1
=1
an=
1
2
an-1+1
(n≥2),则数列{an}的通项公式为an=
2-21-n
2-21-n

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a 1=
1
3
,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=
1
an
(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{
an
n
}的前n项和为Tn,证明:
1
3
Tn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a=
12
,前n项和Sn=n2an,求an+1

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=a,前n项和Sn构成公比为q的等比数列,________________.

(先在横线上填上一个结论,然后再解答)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省汕尾市陆丰市碣石中学高三(上)第四次月考数学试卷(理科)(解析版) 题型:解答题

在数列{an}中,a,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{}的前n项和为Tn,证明:

查看答案和解析>>

同步练习册答案