精英家教网 > 高中数学 > 题目详情
函数y=cos(
x
2
-
π
6
)-sin(
x
2
-
π
6
)
的单调递增区间(  )
分析:利用辅助角公式将y=cos(
x
2
-
π
6
)-sin(
x
2
-
π
6
)转化为:y=
2
cos(
x
2
+
π
12
),利用余弦函数的性质即可得到答案.
解答:解:∵y=cos(
x
2
-
π
6
)-sin(
x
2
-
π
6
)=
2
cos(
x
2
+
π
12
),
∴由2kπ-π≤
x
2
+
π
12
≤2kπ(k∈Z)即可求得y=cos(
x
2
-
π
6
)-sin(
x
2
-
π
6
)的单调递增区间,
由2kπ-π≤
x
2
+
π
12
≤2kπ(k∈Z)得:
∴2kπ-
13π
12
x
2
≤2kπ-
π
12
(k∈Z)
∴4kπ-
13π
6
≤x≤4kπ-
π
6
(k∈Z).
故选A.
点评:本题考查正弦函数的单调性,着重考查辅助角公式的应用及两角和与差的余弦函数,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若θ是三角形的一个内角,且函数y=cosθ•x2-4sinθ•x+6对于任意实数x均取正值,那么cosθ所在区间是(  )
A、(
1
2
,1)
B、(0,
1
2
C、(-2,
1
2
D、(-1,
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=-cos(
x
2
-
π
3
)
的单调递增区间是(  )
A、[2kπ-
4
3
π,2kπ+
2
3
π](k∈Z)
B、[4kπ-
4
3
π,4kπ+
2
3
π](k∈Z)
C、[2kπ+
2
3
π,2kπ+
8
3
π](k∈Z)
D、[4kπ+
2
3
π,4kπ+
8
3
π](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中,真命题的个数为(  )
(1)在△ABC中,若A>B,则sinA>sin B;
(2)已知
AB
=(3,4),
CD
=(-2,-1),则
AB
CD
上的投影为-2;
(3)已知p:?x∈R,cosx=1,q:?R,x2-x+1>0,则“p∧¬q”为假命题
(4)要得到函数y=cos(
x
2
-
π
4
)
的图象,只需将y=sin
x
2
的图象向左平移
π
4
个单位.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=cos(-
x
2
+
π
4
)
的递增区间是
[4kπ-
2
,4kπ+
π
2
]k∈Z
[4kπ-
2
,4kπ+
π
2
]k∈Z

函数y=tan(
x
2
+
π
4
)
的对称中心是
(2kπ+
π
2
,0)k∈Z
(2kπ+
π
2
,0)k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=-cos(
x
2
-
π
3
)
的单调递增区间.

查看答案和解析>>

同步练习册答案