精英家教网 > 高中数学 > 题目详情

解答题

设实数,数列{an}是首项为a,公比为-a的等比数列,记,求证:当时,对任意自然数都有

答案:
解析:

解:

①+②得


练习册系列答案
相关习题

科目:高中数学 来源:重庆市重点中学高2007级高三第四次月考数学试题(理科)[原创]新人教 新人教 题型:044

解答题:解答应写出文字说明、证明过程或演算步骤.

设平面上的动向量,其中s,t为不同时为0的两个实数,实数k≥0,满足

(1)

求函数关系式s=f(t)

(2)

若函数f(t)在(1,+∞)上单调递增,求k的范围

(3)

对上述f(t),当k=0时,存在正项数列{an}满足f(a1)+f(a2)+…+f(an)=Sn2,其中Sn=a1+a2+…+an,证明:<3

查看答案和解析>>

科目:高中数学 来源:湖北省武汉中学2007届高三数学模拟考试卷 题型:044

解答题:解答应写出必要的文字说明,证明过程或演算过程

设平面上的动向量,其中s,t为不同时为0的两个实数,实数k≥0,满足

(1)

求函数关系式s=f(t)

(2)

若函数f(t)在(1,+∞)上单调递增,求k的范围;

(3)

对上述f(t),当k=0时,存在正项数列{an}满足f(a1)+f(a2)+…f(an)=Sn2,其中Sn=a1+a2+…an,证明:<3

查看答案和解析>>

科目:高中数学 来源:2007届江苏省南菁、梁丰、前黄中学三校联考试卷、高三数学 题型:044

解答题:

已知数列是由正数组成的等差数列,是其前项的和,并且

(1)

求数列的通项公式;

(2)

求使不等式对一切均成立的最大实数

(3)

对每一个,在之间插入,得到新数列,设是数列的前项和,试问是否存在正整数,使?若存在求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:广东省珠海市斗门一中2006-2007高三数学理科第一次月考试卷、新课标 人教版 人教版 新课标 题型:044

解答题

设实数a≠0且函数有最小值

(1)

的值;

(2)

设数列{an}的前n项和Sn=f(n)令

证明:数列{bn}是等差数列.

查看答案和解析>>

同步练习册答案