精英家教网 > 高中数学 > 题目详情
已知函数f(x)=lnx,g(x)=ax2+bx(a≠0),设函数f(x)的图象C1与函数g(x)的图象C2交于两点P、Q,过线段PQ的中点R作x轴垂线分别交C1、C2于点M、N,问是否存在点R,使C1在点M处的切线与C2在点N处的切线互相平行?若存在,求出点R的横坐标;若不存在,请说明理由.
不存在
设点P、Q的坐标分别为(x1,y1)、(x2,y2),且0<x2<x1,则点M、N的横坐标均为.
∴C1在点M处的切线斜率为k1|x=
C2在点N处的切线斜率为k2=ax+b|x=+b,
假设C1在点M处的切线与C2在点N处的切线互相平行,
则k1=k2,即+b.
∵P、Q是曲线C1、C2的交点,∴
两式相减,得lnx1-lnx2
即lnx1-lnx2=(x1-x2)
∴lnx1-lnx2,即ln
设u=>1,则lnu=,u>1(*).
令r(u)=lnu-,u>1,则r′(u)=.
∵u>1,∴r′(u)>0,∴r(u)在(1,+∞)上单调递增,
故r(u)>r(1)=0,则lnu>
这与上面(*)相矛盾,所以,故假设不成立.
故C1在点M处的切线与C2在点N处的切线不平行.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)当时,求曲线在点处的切线方程;
(2)当时,若在区间上的最小值为-2,求的取值范围;
(3)若对任意,且恒成立,求的取值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知二次函数,关于x的不等式的解集为,其中m为非零常数.设.
(1)求a的值;
(2)如何取值时,函数存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

曲线处的切线与两坐标轴围成的三角形的面积为4,则   .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若的极值点,求的值;
(2)若的图象在点处的切线方程为
①求在区间上的最大值;
②求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知都是定义在R上的函数,,且,且.若数列的前n项和大于62,则n的最小值为(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,函数y=f(x)在点P处的切线方程是y=-x+8,则f(5)+f′(5)=    

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)在x=1处的导数为3,则f(x)的解析式可能为 (  ).
A.f(x)=(x-1)2+3(x-1)
B.f(x)=2(x-1)
C.f(x)=2(x-1)2
D.f(x)=x-1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=ex+2x,若f′(x)≥a恒成立,则实数a的取值范围是________.

查看答案和解析>>

同步练习册答案