精英家教网 > 高中数学 > 题目详情
已知函数
(Ⅰ)求函数G(x)=h(x)+f(x)的单调区间;
(Ⅱ)当a=2,问是否存在实数t>0,使得函数F(x)=h(x)-tg(x)+f(x)有两个相异的零点?若存在,请求出t的取值范围;若不存在,说明理由.
【答案】分析:(Ⅰ)分别把f(x)和h(x)的解析式代入G(x)中,求出函数的定义域及G′(x)=0时x的值,令导函数大于0解出x的范围即为函数的增区间,令导函数小于0求出x的值即为函数的减区间;
(II)先假设存在t符合条件,根据题意求出F(x)的解析式和定义域,再进行求导并对其整理,再由定义域和条件进行转化:有两个相异的正实根,利用韦达定理表示出两根之和、积,并判断出符号,再对t分类讨论进行说明.
解答:解:(Ⅰ)由题意
∴G(x)的定义域为
=
由G(x)=0得,
,∴

由G(x)>0得,;由G(x)>0得,,且x≠0,
∴G(x)在上是增函数,
上是减函数;
(Ⅱ)假设存在实数t>0,使得函数(x>0)有
相异的零点为x1,x2,则x1>0,x2>0,
==
令y=
由题意得,F(x)=0有两个相异的正实根,
有两个相异的正实根,
∴t≠1,且
∴当0<t<1时,有1-t>0,则,故舍去;
当t>1时,有1-t<0,则,故舍去,

综上,不存在t>0满足条件.
点评:本题考查利用导数研究函数的单调性,考查存在性问题,突出考查构造函数与转化,分类讨论数学思想及综合分析与运算的能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数)在上函数值总小于,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年山东省青岛市高三3月统一质量检测考试(第二套)理科数学试卷(解析版) 题型:解答题

已知函数

1的最

2当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间.,试问函数上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2014届湖北孝感高中高三年级九月调研考试理科数学试卷(解析版) 题型:解答题

已知函数的定义域为,若上为增函数,则称为“一阶比增函数”;若上为增函数,则称为“二阶比增函数”.我们把所有“一阶比增函数”组成的集合记为,所有“二阶比增函数”组成的集合记为.

(Ⅰ)已知函数,若,求实数的取值范围;

(Ⅱ)已知的部分函数值由下表给出,

 求证:

(Ⅲ)定义集合

请问:是否存在常数,使得,有成立?若存在,求出的最小值;若不存在,说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年甘肃省武威五中高一(下)3月月考数学试卷(解析版) 题型:解答题

已知函数,编写一个程序求函数值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=试画出求函数值的程序框图.

查看答案和解析>>

同步练习册答案