精英家教网 > 高中数学 > 题目详情
(2012•自贡三模)F1 F2分别是双曲线
x2
16
-
y2
9
=1的左、右焦点,P为双曲线右支上一点,I是△PF1F2的内心,且S△IPF2=S△IPF1S△IF1F2,则λ=(  )
分析:由于I为△PF1F2的内心,故I到△PF1F2的三边距离相等,由S△IPF2=S△IPF1S△IF1F2,可得|PF1|=|PF2|+λ•2c,利用双曲线的定义及标准方程,可得结论.
解答:解:由于I为△PF1F2的内心,故I到△PF1F2的三边距离相等.
S△IPF2=S△IPF1S△IF1F2
∴|PF1|=|PF2|+λ•2c.
又由双曲线的定义可得|PF1|-|PF2|=2a,
∴λ•2c=2a,
λ=
a
c

由双曲线的标准方程可得a=4,c=5
∴λ=
4
5

故选D.
点评:本题考查双曲线的标准方程,以及双曲线的简单性质的应用,得到λ•2c=2a,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•自贡三模)对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义f′(x)是y=f(x)的导函数y=f′(x)的导函数,若方程f′(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”,可以发现,任何三次函数都有“拐点”,任何三次函数都有对称中心,且“拐点”就是对称中心,请你根据这一发现判断下列命题:
①任意三次函数都关于点(-
b
3a
,f(-
b
3a
))对称:
②存在三次函数f′(x)=0有实数解x0,点(x0,f(x0))为函数y=f(x)的对称中心;
③存在三次函数有两个及两个以上的对称中心;
④若函数g(x)=
1
3
x3-
1
2
x2-
5
12
,则,g(
1
2012
)+g(
2
2012
)+g(
3
2012
)+…+g(
2011
2012
)=-105.5.
其中正确命题的序号为
①②④
①②④
(把所有正确命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•自贡三模)已知G是△ABC的重心,且a
GA
+b
GB
+
3
c
GC
=
0
,其中a,b,c分别为角A、B、C的对边,则cosc=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•自贡三模)在三棱锥A-BCD中,侧棱AB、AC、AD两两垂直,△ABC,△ACD,△ADB的面积分别为
2
2
3
2
6
2
,则三棱锥A-BCD的外接球的体积为
6
π
6
π

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•自贡三模)已知圆C:(x-a)2+(y-2)2=4(a>0)及直线l:x-y+3=0,当直线l被C截得弦长为2
3
时,则a=
2
-1
2
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•自贡三模)若(x2+
1
ax
)6
的展开式中的常数项为
15
16
,则实数a
±2
±2

查看答案和解析>>

同步练习册答案