精英家教网 > 高中数学 > 题目详情
如图,矩形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD=1,CD=2,DE=2,M为CE的中点.
(Ⅰ)求证:BM∥平面ADEF.
(Ⅱ)求二面角B-EC-D的余弦值.
分析:(I)取DE中点N,连接MN,AN,由三角形中位线定理,结合已知中AB∥CD,AB=AD=1,CD=2,易得四边形ABMN为平行四边形,所以BM∥AN,再由线面平面的判定定理,可得BM∥平面ADEF.
(Ⅱ)以DA为x轴,以DC为y轴,以DE为z轴,建立空间直角坐标系,利用向量法能够求出二面角B-EC-D的平面角的余弦值.
解答:(I)证明:取DE中点N,连接MN,AN
在△EDC中,M、N分别为EC,ED的中点,所以MN∥CD,且MN=
1
2
CD.
由已知AB∥CD,AB=
1
2
CD,所以MN∥AB,且MN=AB.
所以四边形ABMN为平行四边形,所以BM∥AN
又因为AN?平面ADEF,且BM?平面ADEF,
所以BM∥平面ADEF.
(Ⅱ)解:以DA为x轴,以DC为y轴,以DE为z轴,建立空间直角坐标系,
∵AD⊥CD,AB∥CD,AB=AD=1,CD=2,DE=2,M为CE的中点,
∴B(1,1,0),E(0,0,2),C(0,2,0),D(0,0,0),
EC
=(0,2,-2),
EB
=(1,1,-2),
设平面EBC的法向量为
n 1
=(x,y,z),则
EC
n 1
=0,
EB
n 1
=0,
2x-2z=0
x+y-2z=0
,∴
n 1 
=(1,1,1),
设二面角B-EC-D的平面角为α,
∵平面EDC的法向量为
n 2
=(1,0,0),
∴cosα=|cos<
n 1 
n 2 
>|=|
1
3
|=
3
3
点评:本题考查的知识点是直线与平面平行的判定,直线与平面垂直的判定,三棱锥体积的计算,熟练掌握空间直线与平面不同位置关系(平行和垂直)的判定定理、性质定理、定义及几何特征是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,矩形 ADEF与梯形ABCD 所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD=2,CD=4,M为CE的中点.    
(Ⅰ)求证:BM∥平面ADEF;
(Ⅱ)求证:BC⊥平面BDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,矩形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD=2,CD=4,M为CE的中点. 
(Ⅰ)求证:BM∥平面ADEF;
(Ⅱ)求证:平面BDE⊥平面BEC;
(Ⅲ)若DE=3,求平面BEC与平面DEC所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德州一模)如图,矩形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD=1,CD=2,DE=3,M为CE的中点.
(Ⅰ)求证:BM∥平面ADEF;
(Ⅱ)求直线DB与平面BEC所成角的正弦值;
(Ⅲ)求平面BEC与平面DEC所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,矩形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD=
12
CD=2
,DE=3,M为CE的中点.
(Ⅰ)求证:BM∥平面ADEF;
(Ⅱ)求直线DB与平面BEC所成角的正弦值.

查看答案和解析>>

同步练习册答案