精英家教网 > 高中数学 > 题目详情
12.已知α∈R,关于x的一元二次不等式2x2-17x+a≤0的解集中有且仅有3个整数,则实数a的取值范围为(30,33].

分析 二次函数f(x)=2x2-17x+a的对称轴为x=$\frac{17}{4}$,关于x的一元二次不等式2x2-17x+a≤0的解集中有且仅有3个整数为3,4,5,由此能求出实数a的取值范围.

解答 解:∵关于x的一元二次不等式2x2-17x+a≤0的解集中有且仅有3个整数,
∴△=289-8a>0,解得a<$\frac{289}{8}$.
∵二次函数f(x)=2x2-17x+a的对称轴为x=$\frac{17}{4}$,
∴关于x的一元二次不等式2x2-17x+a≤0的解集中有且仅有3个整数为3,4,5,
∴$\left\{\begin{array}{l}{f(3)=2×9-17×3+a≤0}\\{f(6)=2×36-17×6+a>0}\end{array}\right.$,且f(2)>0,f(5)≤0,
解得30<a≤33.
∴实数a的取值范围是(30,33].
故答案为:(30,33].

点评 本题考查了有特殊要求的一元二次不等式的解法,考查了推理能力和计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知i为虚数单位,则|$\frac{2+4i}{1+\sqrt{3}i}$|=(  )
A.$\frac{\sqrt{5}}{2}$B.$\sqrt{5}$C.2$\sqrt{5}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.f(x)的定义域为R,且$f(x)=\left\{\begin{array}{l}{2^{-x}}-1\;\;\;\;\;x≤0\\ f(x-2)\;\;x>0\end{array}\right.$.若方程$f(x)=\frac{3}{2}x+a$的两个不同实根,则a的取值范围为(  )
A.(-∞,3)B.(-∞,3]C.(0,3)D.(-∞,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知定义在R上的函数f(x)=$\frac{-{2}^{x}-b}{{2}^{x}-a}$是奇函数.
(1)求a、b的值;
(2)判断f(x)在R上的单调性,并用定义证明.
(3)求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.空间四点A,B,C,D满足|$\overrightarrow{AB}$|=2,|$\overrightarrow{BC}$|=3,|$\overrightarrow{CD}$|=3$\sqrt{6}$,|$\overrightarrow{DA}$|=7.则$\overrightarrow{AC}$•$\overrightarrow{BD}$的值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.线段AB在平面α内,AC⊥α,BD⊥AB,且BD与α所成角是30°,如果AB=a,AC=BD=b,求C、D间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.两个向量相等的充要条件是它们的(  )
A.长度相等B.长度相等,方向相同
C.方向相同D.面积相等

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知点A(2,y)B(-3,-2),C(1,1),且$\overrightarrow{AB}$与$\overrightarrow{BC}$垂直.求y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆C过点P(1,1),且与圆M:(x+2)2+(y+2)2=r2(r>0)关于直线x+y+2=0对称.
(1)求圆C的方程;
(2)设Q为圆C上的一个点,$\overrightarrow{PQ}$•$\overrightarrow{MQ}$=-4,求点Q的坐标.

查看答案和解析>>

同步练习册答案