精英家教网 > 高中数学 > 题目详情
定义在R+上的函数f(x)对任意实数a,b∈R+,均有f(ab)=f(a)+f(b)成立,且当x>1时,f(x)<0.
(1)求f(1)
(2)求证:f(x)为减函数.
(3)当f(4)=-2时,解不等式f(x-3)+f(5)≥-1.
分析:(1)利用抽象解析式求函数值f(1),可利用赋值法,令a=b=1.
(2)证明单调性,利用定义设出x1<x2,关键是利用f(ab)=f(a)+f(b),构造出f(x2)-f(x1)的式子,可得f(x2)-f(x1)=f(
x2
x1
)
,从而可得证明结果.
(3)的求解要充分利用(2)的结论,脱去函数符号以及得出-1=f(2),进而转化为不等式组求解是关键所在.
解答:解:(1)由题意令a=b=1得,
f(1×1)=f(1)+f(1),
得f(1)=0.
(2)设x1,x2∈R+,x1<x2,则
x2
x1
>1

所以f(
x2
x1
)
<0,
故f(x2)=f(
x2
x1
x1)
=f(
x2
x1
)
+f(x1),
所以f(x2)-f(x1)=f(
x2
x1
)
<0,
 所以f(x2)<f(x1),从而f(x)为R+上的减函数.
(3)由已知f(4)=f(2•2)=f(2)+f(2)=-2,得f(2)=-1,
所以原不等式化为:f((x-3)•5)≥f(2),
又有(2)的结论可得:
x-3>0
5>0
5(x-3)≤2

解之得:3<x≤
17
5
点评:本题考查函数的概念,函数的求值,单调性的判断与证明,注重考查了抽象函数的概念,解抽象不等式问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周期是π,且当x∈[0,
π
2
]时,f(x)=sinx,则f(
3
)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

20、已知定义在R上的函数f(x)=-2x3+bx2+cx(b,c∈R),函数F(x)=f(x)-3x2是奇函数,函数f(x)在x=-1处取极值.
(1)求f(x)的解析式;
(2)讨论f(x)在区间[-3,3]上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)满足:f(x+2)=
1-f(x)1+f(x)
,当x∈(0,4)时,f(x)=x2-1,则f(2010)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
π
2
),最大值与最小值的差为4,相邻两个最低点之间距离为π,函数y=sin(2x+
π
3
)图象所有对称中心都在f(x)图象的对称轴上.
(1)求f(x)的表达式;    
(2)若f(
x0
2
)=
3
2
(x0∈[-
π
2
π
2
]),求cos(x0-
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)的图象是连续不断的,且有如下对应值表:
x 0 1 2 3
f(x) 3.1 0.1 -0.9 -3
那么函数f(x)一定存在零点的区间是(  )

查看答案和解析>>

同步练习册答案