精英家教网 > 高中数学 > 题目详情
已知直角坐标平面上点Q(2,0)和圆C:x2+y2=1,动点M到圆C的切线长与|MQ|的比等于常数λ(λ>0).求动点M的轨迹方程,说明它表示什么曲线.
解:如图,设MN切圆于N,则动点M组成的集合是P={M||MN|=λ|MQ|},式中常数λ>0.
因为圆的半径|ON|=1,所以|MN|2=|MO|2﹣|ON|2=|MO|2﹣1.
设点M的坐标为(x,y),则
整理得(λ2﹣1)(x2+y2)﹣4λ2x+(1+4λ2)=0.
经检验,坐标适合这个方程的点都属于集合P.
故这个方程为所求的轨迹方程.
当λ=1时,方程化为x=,它表示一条直线,该直线与x轴垂直且交x轴于点(,0),
当λ≠1时,方程化为(x﹣2+y2=
它表示圆,该圆圆心的坐标为(,0),半径为
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知直角坐标平面上点Q(2,0)和圆C:x2+y2=1,动点M到圆C的切线长与|MQ|的比等于常数λ(λ>0).求动点M的轨迹方程,说明它表示什么曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知直角坐标平面上点Q(k,0)和圆C:x2+y2=1;动点M到圆的切线长与Q|
的比值为2.
(1)当 k=2 时,求点M 的轨迹方程.
(2)当 k∈R 时,求点M 的轨迹方程,并说明轨迹是什么图形.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直角坐标平面上点Q(2,0)和圆C:x2+y2=1,动点M到圆C的切线长与|MQ|的比等于常数2,求动点M的轨迹方程,说明它表示什么曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知直角坐标平面上点Q(2,0)和圆C:x2+y2=1,动点M到圆C的切线长与|MQ|的比等于
2
.求动点M的轨迹方程,并说明它表示什么曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直角坐标平面上点Q(2,0)和圆C:x2+y2=1,动点M到圆C的切线长与|MQ|的比等于常数λ(λ>0),求动点M的轨迹方程,并说明它表示什么曲线.

查看答案和解析>>

同步练习册答案