精英家教网 > 高中数学 > 题目详情

O是平面上一点,A,B,C是平面上不共线三点,动点P满足数学公式,当数学公式时,数学公式,求数学公式)的最小值________.

-2
分析:设BC的中点为D,由题意可得AD=2,且点P在线段AD上,从而得到==2x(2-x)cos180°=2(x-1)2-2,利用二次函数的性质得到其最小值.
解答:∵,设BC的中点为D,∴=λ( )=λ
且点P在线段AD上,当时,=||,即 P和D重合时,AD=2.
)=,设PA=x,则PD=2-x,x∈[0,2],
=2x(2-x)cos180°=2(x-1)2-2≥-2,故的最小值等于-2,
故答案为-2.
点评:本题考查两个向量的数量积的定义,两个向量的加减法的法则,以及其几何意义,得到==2x(2-x)cos180°,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

O是平面α上一点,A、B、C是平面α上不共线三点,平面α内的动点P满足
OP
=
OA
+λ(
AB
+
AC
)
,若λ=
1
2
时,
PA
•(
PB
+
PC
)
的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

O是平面上一点,A,B,C是平面上不共线三点,动点P满足
OP
=
OA
+λ(
AB
+
AC
),(λ∈[0,
1
2
])
,当λ=
1
2
时,|
AP
|=2
,求
PA
•(
PB
+
PC
)的最小值
 

查看答案和解析>>

科目:高中数学 来源: 题型:

O是平面上一点,A,B,C是该平面上不共线的三个点,一动点P满足
OP
=
OA
+λ(
AB
+
AC
)
,λ∈(0,+∞),则直线AP一定通过△ABC的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

O是平面上一点,A、B、C是平面上不共线三点,动点P满足
OP
=
OA
+λ(
AB
+
AC
),λ=
1
2
时,则
PA
•(
PB
+
PC
)的值为
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

O是平面上一点,A、B、C是平面上不共线的三个点,动点P满足=+λ[],λ∈[0,+∞]则P的轨迹一定通过△ABC的(    )

A.外心       B.内心    C.重心       D.垂心

查看答案和解析>>

同步练习册答案