精英家教网 > 高中数学 > 题目详情
3.在三角形ABC中,角A,B,C的对边分别为a,b,c,已知a2+c2=4ac,三角形的面积为$S=\frac{{\sqrt{3}}}{2}accosB$,则sinAsinC的值为$\frac{1}{4}$.

分析 由已知及三角形面积公式可求tanB=$\sqrt{3}$,结合范围0<B<π,可求B=$\frac{π}{3}$,由已知及余弦定理可求b2=3ac.由正弦定理可得sin2B=3sinAsinC,从而得解sinAsinC的值.

解答 解:在三角形ABC中,$S=\frac{{\sqrt{3}}}{2}accosB$=$\frac{1}{2}$acsinB,
∴tanB=$\sqrt{3}$,
∵B为三角形内角,
∴0<B<π,
∴B=$\frac{π}{3}$.
∵a2+c2=4ac,
又∵a2+c2=b2+2accosB,
∴b2+2accosB=4ac,
∴b2=3ac.
由正弦定理可得sin2B=3sinAsinC,
∴sinAsinC=$\frac{1}{4}$.
故答案为:$\frac{1}{4}$.

点评 本题考查了正弦定理余弦定理、三角形面积计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)的定义域为R,且为可导函数,若对?x∈R,总有(2-x)f(x)+xf′(x)<0成立(其中f′(x)是f(x)的导函数),则(  )
A.f(x)>0恒成立B.f(x)<0恒成立
C.f(x)的最大值为0D.f(x)与0的大小关系不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知直线$l:\left\{\begin{array}{l}x=2+t\\ y=-1-t\end{array}\right.$(t是参数),曲线C的极坐标方程是ρ=1,那么直线l与曲线C的公共点的个数是2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在平面直角坐标系xOy中,300°角终边上一点P的坐标为(1,m),则实数m的值为-$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数$f(x)=\frac{sinx}{x}$的部分图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>0,b>0)$的右焦点F(1,0),长轴的左、右端点分别为A1,A2;且$\overrightarrow{F{A_1}}•\overrightarrow{F{A_2}}=-1$.
(1)求椭圆E的方程;
(2)已知点B(0,-1),经过点(1,1)且斜率为k的直线与椭圆E交于不同的两P、Q点(均异于点B),证明:直线BP与BQ的斜率之和为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若A(1,2),B(2,3),C(-3,5),则△ABC为(  )
A.直角三角形B.锐角三角形C.钝角三角形D.不等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设a,b是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是(  )
A.若a∥α,b∥β,则a∥bB.若a?α,b?β,a∥b,则α∥β
C.若a∥b,b∥α,α∥β,则a∥βD.若a⊥α,a⊥β,b⊥β,则b⊥α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知圆C关于y轴对称,经过P(1,0)点,且被直线y=x分成两段弧长之比为1:2.
(Ⅰ)求圆C的方程;
(Ⅱ)若圆C的圆心在x轴下方,过点P(-2,1)作直线l与圆C相切,求直线l的方程.

查看答案和解析>>

同步练习册答案