精英家教网 > 高中数学 > 题目详情
△ABC的顶点A(-5,0),B(5,0),△ABC的内切圆圆心在直线x=3上,则顶点C的轨迹方程是(  )
A、
x2
9
-
y2
16 
=1
B、
x2
16
-
y2
9
=1
C、
x2
9
-
y2
16 
=1(x>3)
D、
x2
16
-
y2
9
=1(x>4)
分析:根据图可得:|CA|-|CB|为定值,利用根据双曲线定义,所求轨迹是以B为焦点,实轴长为6的双曲线的右支,从而写出其方程即得.
解答:精英家教网解:如图设△ABC与圆的切点分别为D、E、F,
则有|AD|=|AE|=8,|BF|=|BE|=2,|CD|=|CF|,
所以|CA|-|CB|=8-2=6.
根据双曲线定义,所求轨迹是以B为焦点,实轴长为6的双曲线的右支,
方程为
x2
9
-
y2
16 
=1(x>3).
故选C
点评:本题考查轨迹方程,利用的是定义法,定义法:若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC的顶点A,B在椭圆x2+3y2=4上,C在直线l:y=x+2上,且AB∥l.
(1)求边AB中点的轨迹方程;
(2)当AB边通过坐标原点O时,求△ABC的面积;
(3)当∠ABC=90°,且斜边AC的长最大时,求AB所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正△ABC的顶点A在平面α内,顶点B,C在平面α的同一侧,D为BC的中点,若△ABC在平面α内的射影是以A为直角顶点的三角形,则直线AD与平面α所成角的正弦值的最小值为
6
3
6
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的顶点A(0,1),AB边上的中线CD所在的直线方程为2x-2y-1=0,AC边上的高BH所在直线的方程为y=0.
(1)求△ABC的顶点B、C的坐标;
(2)若圆M经过不同的三点A、B、P(m,0),且斜率为1的直线与圆M相切于点P,求圆M的方程;
(3)问圆M是否存在斜率为1的直线l,使l被圆M截得的弦为DE,以DE为直径的圆经过原点.若存在,写出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xoy中,已知△ABC的顶点A(-1,0)和C(1,0),顶点B在椭圆
x2
4
+
y2
3
=1
上,则
sinA+sinC
sinB
的值是
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的顶点A(0,1),AB边上的中线CD所在的直线方程为2x-2y-1=0,AC边上的高BH所在直线的方程为y=0.
(Ⅰ)求△ABC的顶点B、C的坐标;
(Ⅱ) 若圆M经过A、B且与直线x-y+3=0相切于点P(-3,0),求圆M的方程.

查看答案和解析>>

同步练习册答案