精英家教网 > 高中数学 > 题目详情
函数y=f(x-1)为奇函数,y=f(x+1)为偶函数(定义域均为R)若0≤x<1时:f(x)=2x,则f(10)=
1
1
分析:先由周期函数的定义证明函数f(x)为周期为8的函数,所以f(10)=f(2),再由函数的对称性,即函数关于x=1对称,可得f(2)=f(0),最后代入已知解析式即可
解答:解:∵数y=f(x-1)为奇函数
∴f(-x-1)=-f(x-1)即 f(-x)=-f(x-2)
∵y=f(x+1)为偶函数
∴f(-x+1)=f(x+1),即f(x+2)=f(-x)
∴f(x+2)=-f(x-2)
即f(x+8)=f(x)
∴f(10)=f(2)=f(0)=20=1
故答案为 1
点评:本题考察了抽象函数表达式的意义,函数的奇偶性,周期性,对称性间的关系,解题时要透彻理解复合函数奇偶性与对称性的内在联系,并能熟练的由抽象表达式推证函数的周期性
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=f(x)是定义在R上的增函数,且函数y=f(x-1)的图象关于点(1,0)对称,如果实数m,n满足不等式组
f(m2-6m+21)+f(n2-8n)<0
m>3
,那么m2+n2的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x-1)的图象与函数y=ln
x
+1
的图象关于直线y=x对称,则f(x)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•德州一模)已知函数y=f(x-1)的图象关于直线x=1对称,且当x∈(-∞,0)时,f(x)+xf′(x)<0成立若a=(20.2)•f(20.2),b=(1n2)•f(1n2),c=(1og
1
2
1
4
)•f(1og
1
2
1
4
),则a,b,c的大小关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x-1)的图象关于点(1,0)对称,且当x∈(-∞,0)时,f(x)+xf′(x)<0成立,若a=(30.3)•f(30.3),b=(logπ3)•f(logπ3),c=(log3
1
9
)•f(log3
1
9
),则a,b,c的从大到小排列是
c>a>b
c>a>b

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的增函数,则函数y=f(|x-1|)-1的图象可能是(  )

查看答案和解析>>

同步练习册答案