精英家教网 > 高中数学 > 题目详情
如图,在三棱锥中,,D为AC的中点,.

(1)求证:平面平面
(2)如果三棱锥的体积为3,求.
(1)证明过程详见解析;(2).

试题分析:本题主要以三棱锥为几何背景考查线线垂直、平行的判定,线面垂直,面面垂直的判定以及用空间向量法求二面角的余弦值,考查空间想象能力和计算能力.第一问,根据已知条件,取中点,连结,得出,再利用,根据线面垂直的判定证出平面,从而得到垂直平面内的线,再利用为中位线,得出平面,最后利用面面垂直的判定证明平面垂直平面;第二问,根据已知进行等体积转换,利用三棱锥的体积公式列出等式,解出的值.
试题解析:(Ⅰ)取中点为,连结
因为,所以
,所以平面
因为平面,所以.        3分
由已知,,又,所以
因为,所以平面
平面,所以平面⊥平面.      5分
(Ⅱ)由(Ⅰ)知,平面
,因为的中点,所以
,      10分
解得,即.        12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

中,AB=2BF=4,C,E分别是AB,AF的中点(如下左图).将此三角形沿CE对折,使平面AEC⊥平面BCEF(如下右图),已知D是AB的中点.

(1)求证:CD∥平面AEF;
(2)求证:平面AEF⊥平面ABF;
(3)求三棱锥C-AEF的体积,

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在三棱锥中,.

(Ⅰ)求证:;
(Ⅱ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱柱中,AC⊥BC,AB⊥,D为AB的中点,且CD⊥

(Ⅰ)求证:平面⊥平面ABC;
(2)求多面体的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在底面是正方形的四棱锥中,于点中点,上一动点.

(1)求证:
(1)确定点在线段上的位置,使//平面,并说明理由.
(3)如果PA=AB=2,求三棱锥B-CDF的体积

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

某三棱锥的三视图如图所示,该三棱锥的表面积是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知矩形ABCD的顶点都在半径为4的球O的球面上,且AB=3,BC=2, 则棱锥O-ABCD的体积为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,一只蚂蚁由棱长为1的正方体ABCD-A1B1C1D1点出发沿正方体的表面到达点的最短路程为        

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

棱长都是1的三棱锥的表面积为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案