精英家教网 > 高中数学 > 题目详情
已知函数g(x)在(0,+∞)上是增函数,g(x)=f(|x|).若f(x)=lgx,则g(lgx)>g(1)时x的取值范围是
(0,
1
10
)∪(10,+∞)
(0,
1
10
)∪(10,+∞)
分析:据题意知g(x)=lg|x|为偶函数且g(lgx)>g(1),由偶函数的性质可得|lgx|>1,解不等式可求
解答:解:根据题意知g(x)=lg|x|为偶函数
又因为g(lgx)>g(1),且函数y=lgx为(0,+∞)单调递增
∴y=lg|x|在(-∞,0)上单调递减且函数的图象关于y轴对称
所以|lgx|>1,
∴lgx>1或lgx<-1
解得0<x<
1
10
或x>10.
故答案:(0,
1
10
)∪(10,+∞)
点评:本题主要考查了偶函数单调性性质的应用,熟记一些常用的结论可以简化基本运算.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)对定义域中任意x,均满足f(x)+f(2a-x)=2b,则称函数y=f(x)的图象关于点(a,b)对称;
(1)已知f(x)=
x2-mx+1x
的图象关于点(0,1)对称,求实数m的值;
(2)已知函数g(x)在(-∞,0)∪(0,+∞)上的图象关于点(0,1)对称,且当x∈(0,+∞)时,g(x)=-2x-n(x-1),求函数g(x)在x∈(-∞,0)上的解析式;
(3)在(1)(2)的条件下,若对实数x<0及t>0,恒有g(x)+tf(t)>0,求正实数n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)对定义域中任意x均满足f(x)+f(2a-x)=2b,则称函数y=f(x)的图象关于点(a,b)对称.
(1)已知函数f(x)=
x2+mx+mx
的图象关于点(0,1)对称,求实数m的值;
(2)已知函数g(x)在R上的图象关于点(0,1)对称,且当x∈(0,+∞)时,g(x)=x2-2x,求函数g(x)在R上的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)对定义域中任意x均满足f(x)+f(2a-x)=2b,则称函数y=f(x)的图象关于点(a,b)对称.
(Ⅰ)已知函数f(x)=
x2+mx+mx
的图象关于点(0,1)对称,求实数m的值;
(Ⅱ)已知函数g(x)在(-∞,0)∪(0,+∞)上的图象关于点(0,1)对称,且当x∈(0,+∞)时,g(x)=x2+ax+1,求函数g(x)在(-∞,0)上的解析式;
(Ⅲ)在(Ⅰ)、(Ⅱ)的条件下,当t>0时,若对任意实数x∈(-∞,0),恒有g(x)<f(t)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省安庆一中高一(上)期中数学试卷(解析版) 题型:解答题

若函数f(x)对定义域中任意x均满足f(x)+f(2a-x)=2b,则称函数y=f(x)的图象关于点(a,b)对称.
(1)已知函数的图象关于点(0,1)对称,求实数m的值;
(2)已知函数g(x)在R上的图象关于点(0,1)对称,且当x∈(0,+∞)时,g(x)=x2-2x,求函数g(x)在R上的解析式.

查看答案和解析>>

同步练习册答案