精英家教网 > 高中数学 > 题目详情

若直线和⊙O∶相离,则过点的直线与椭圆的交点个数为(    )

A. 至多一个   B.  2个    C.  1个    D. 0个

 

【答案】

B

【解析】

试题分析:由题意可得,,则,所以点在以原点为圆心,以2为半径的圆内的点,而椭圆的长半轴长为3,短半轴长为2,所以圆内切于椭圆,即点在椭圆内,所以过点的直线与椭圆一定相交,它们的公共点的个数为2,故选B.

考点:本题要求学生掌握直线与圆的位置关系,会用点到直线的距离公式化简求值,以及掌握椭圆的简单性质,考查了数形结合的思想方法.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
,点A、B分别是椭圆C的左顶点和上顶点,直线AB与圆G:x2+y2=
c2
4
(c是椭圆的焦半距)相离,P是直线AB上一动点,过点P作圆G的两切线,切点分别为M、N.
(1)若椭圆C经过两点(1,
4
2
3
)
(
3
3
2
,1)
,求椭圆C的方程;
(2)当c为定值时,求证:直线MN经过一定点E,并求
OP
OE
的值(O是坐标原点);
(3)若存在点P使得△PMN为正三角形,试求椭圆离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题15分)

已知椭圆C:,点A、B分别是椭圆C的左顶点和上顶点,直线AB与圆G: 是椭圆的焦半距)相离,P是直线AB上一动点,过点P作圆G的两切线,切点分别为M、N.

(1)若椭圆C经过两点,求椭圆C的方程;

(2)当为定值时,求证:直线MN经过一定点E,并求的值(O是坐标原点);

(3)若存在点P使得△PMN为正三角形,试求椭圆离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省泰州市姜堰市蒋垛中学高三(下)3月综合测试数学试卷(解析版) 题型:解答题

已知椭圆C:,点A、B分别是椭圆C的左顶点和上顶点,直线AB与圆G:(c是椭圆的焦半距)相离,P是直线AB上一动点,过点P作圆G的两切线,切点分别为M、N.
(1)若椭圆C经过两点,求椭圆C的方程;
(2)当c为定值时,求证:直线MN经过一定点E,并求的值(O是坐标原点);
(3)若存在点P使得△PMN为正三角形,试求椭圆离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011年江苏省扬州市高考数学三模试卷(解析版) 题型:解答题

已知椭圆C:,点A、B分别是椭圆C的左顶点和上顶点,直线AB与圆G:(c是椭圆的焦半距)相离,P是直线AB上一动点,过点P作圆G的两切线,切点分别为M、N.
(1)若椭圆C经过两点,求椭圆C的方程;
(2)当c为定值时,求证:直线MN经过一定点E,并求的值(O是坐标原点);
(3)若存在点P使得△PMN为正三角形,试求椭圆离心率的取值范围.

查看答案和解析>>

同步练习册答案