精英家教网 > 高中数学 > 题目详情
甲、乙两位学生参加数学竞赛培训,现分别从他们的培训期间参加的若干次预赛成中随机抽取8次,记录如下
甲:82,91,79,78,95,88,83,84;乙:92,95,80,75,83,80,90,85.
(1)画出甲、乙两位学生成绩的茎叶图;
(2)现要从中选派一人参加数学竞赛,从统计学角度,你认为派哪位学生参加合请说明理由.
(3)若将频率视为概率,对学生甲在今后的三次数学竞赛成绩进行预测,记这三次成绩中高于80分的次数为ξ,求ξ的分布列及数学期望Eξ.
分析:(1)用茎叶图表示两组数据,首先要先确定“茎”值,再将数据按“茎”值分组分类表示在“叶”的位置.
(2)选派学生参加大型比赛,根据不同的标准选派的方法也不一样①是要寻找成绩优秀的学生,就要分析两名学生的平均成绩②若平均成绩相等,再由茎叶图或是由方差(标准差)分析出成绩相比稳定的学生参加③为了追求高分产生的概率,也可以从高分产生的概率方面对两人进行比较.
(3)数学期望的计算,可先由给定数据列出分布列,再根据数学期望的计算公式给出结果.
解答:解:(1)茎叶图如图
精英家教网

(2)方法一:(根据成绩稳定的优秀学生参加原则)
.
x
=
.
x
=85,但S2<S2
所以选派甲合适(6分)
方法二:(根据高分产生概率高的学生参加原则)
假设含9(0分)为高分,则甲的高分率为
2
8
,乙的高分率为
3
8

所以派乙合适.
或:假设含8(5分)为高分,则甲的高分率为
3
8
,乙的高分率为
1
2

所以派乙合适.
(3)甲高于8(0分)的频率为
6
8
=
3
4
(7分)ξ的可能取值为0、1、2、3
ξ~B(3,
3
4
)

P(ξ=k)=
C
k
3
(
3
4
)k(
1
4
)3-k
,(k=0,1,2,3)
∴ξ的分布列为
精英家教网
Eξ=3×
3
4
=
9
4
(12分)
点评:根据新高考服务于新教材的原则,作为新教材的新增内容--“茎叶”图是新高考的重要考点,同时(2)中概率、数学期望的计算也是高考的热点.对于“茎叶图”学习的关键是学会画图、看图和用图,对于概率要多练习使用列举法表示满足条件的基本事件个数.对于数学期望的计算则要熟练掌握运算方法和步骤.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:
甲:82,81,79,78,95,88,93,84
乙:92,95,80,75,83,80,90,85
(1)用茎叶图表示这两组数据;
(2)现要从中选派一人参加数学竞赛,从统计学的角度(在平均数、方差或标准差中选两个)考虑,你认为选派哪位学生参加合适?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:
82 81 79 78 95 88 93 84
92 95 80 75 83 80 90 85
(Ⅰ)用茎叶图表示这两组数据;
(Ⅱ)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?请说明理由;
(Ⅲ)若将频率视为概率,对甲同学在今后的3次数学竞赛成绩进行预测,记这3次成绩中高于80分的次数为ξ,求ξ的分布列及数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:
82 81 79 78 95 88 93 84
92 95 80 75 83 80 90 85
(1)用茎叶图表示这两组数据,并指出两组数据的中位数.
(2)从平均数、方差S2=
1
n
[(x1-
.
x
)2+(x2-
.
x
)2+…+(xn-
.
x
)2]
考虑,你认为哪位学生更稳定?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•焦作模拟)甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次.记录如下:
甲:82 81 79 78 95 88 93 84
乙:92 95 80 75 83 80 90 85
(1)画出甲、乙两位学生成绩的茎叶图,指出学生乙成绩的中位数;
(2)现要从中选派一人参加数学竞赛,从平均状况和方差的角度考虑,你认为派哪位学生参加合适?请说明理由;
(3)若将频率视为概率,对学生甲在今后的三次数学竞赛成绩进行预测,记这三次成绩中高于80分的次数为ξ,求ξ的分布列及数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:
甲:82  81  79   78  95  88  93  84
乙:92  95  80   75  83  80  90  85
(Ⅰ)用茎叶图表示这两组数据,并写出乙组数据的中位数;
(Ⅱ)经过计算知甲、乙两人预赛的平均成绩分别为
.
x
=85
.
x
=85
,甲的方差为 s2=35.5;现要从中选派一人参加数学竞赛,你认为选派哪位学生参加较合适?请说明理由;
(Ⅲ)若将预赛成绩中的频率视为概率,对甲同学今后3次的数学竞赛成绩进行预测,记这3次成绩中高于80分的次数为ξ,求ξ的分布列及数学期望.

查看答案和解析>>

同步练习册答案