精英家教网 > 高中数学 > 题目详情

对区间I上有定义的函数g(x),记g(I)={y|y=g(x),x∈I}.已知定义域为[0,3]的函数y=f(x)有反函数y=f-1(x),且f-1([0,1))=[1,2),f-1((2,4])=[0,1).若方程f(x)-x=0有解x0,则x0=________.

2
分析:根据互为反函数的两函数定义域、值域互换可判断:当x∈[0,1)时,x∈[1,2)时f(x)的值域,进而可判断此时f(x)=x无解;由f(x)在定义域[0,3]上存在反函数可知:x∈[2,3]时,f(x)的取值集合,再根据方程f(x)=x有解即可得到x0的值.
解答:因为g(I)={y|y=g(x),x∈I},f-1([0,1))=[1,2),f-1(2,4])=[0,1),
所以对于函数f(x),
当x∈[0,1)时,f(x)∈(2,4],所以方程f(x)-x=0即f(x)=x无解;
当x∈[1,2)时,f(x)∈[0,1),所以方程f(x)-x=0即f(x)=x无解;
所以当x∈[0,2)时方程f(x)-x=0即f(x)=x无解,
又因为方程f(x)-x=0有解x0,且定义域为[0,3],
故当x∈[2,3]时,f(x)的取值应属于集合(-∞,0)∪[1,2]∪(4,+∞),
故若f(x0)=x0,只有x0=2,
故答案为:2.
点评:本题考查函数的零点及反函数,考查学生分析解决问题的能力,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)如果两个实数u<v,求证:2u<
v2-u2
v-u
<2v

(2)定义  设函数F(x)和f(x)都在区间I上有定义,若对I的任意子区间[u,v],总有[u,v]上的p和q,使有不等式f(p)≤
F(u)-F(v)
u-v
≤f(q)
成立,则称F(x)是f(x)在区间I上的甲函数,f(x)是F(x)在区间I上的乙函数.
请根据乙函数定义证明:在(0,+∞)上,函数g(x)=
1
2
x
f(x)=
x
的乙函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)对区间I上有定义的函数g(x),记g(I)={y|y=g(x),x∈I}.已知定义域为[0,3]的函数y=f(x)有反函数y=f-1(x),且f-1([0,1))=[1,2),f-1((2,4])=[0,1).若方程f(x)-x=0有解x0,则x0=
2
2

查看答案和解析>>

科目:高中数学 来源:上海 题型:填空题

对区间I上有定义的函数g(x),记g(I)={y|y=g(x),x∈I}.已知定义域为[0,3]的函数y=f(x)有反函数y=f-1(x),且f-1([0,1))=[1,2),f-1((2,4])=[0,1).若方程f(x)-x=0有解x0,则x0=22.

查看答案和解析>>

科目:高中数学 来源:2013年上海市高考数学试卷(理科)(解析版) 题型:填空题

对区间I上有定义的函数g(x),记g(I)={y|y=g(x),x∈I}.已知定义域为[0,3]的函数y=f(x)有反函数y=f-1(x),且f-1([0,1))=[1,2),f-1((2,4])=[0,1).若方程f(x)-x=0有解x,则x=   

查看答案和解析>>

同步练习册答案