精英家教网 > 高中数学 > 题目详情
已知O为坐标原点,M(cosx,2
3
),N(2cosx,sinxcosx+
3
6
a)
其中x∈R,a为常数,
设函数f(x)=
OM
ON

(Ⅰ)求函数y=f(x)的表达式和对称轴方程;
(Ⅱ)若角C为△ABC的三个内角中的最大角,且y=f(C)的最小值为0,求a的值.
分析:(1)两角和正弦公式,求出f(x)=2sin(2x+
π
6
)+a+1
,由 2x+
π
6
=kπ+
π
6
,k∈z,求出对称轴方程.
(2)由角C为△ABC的三个内角中的最大角可得 角2C+
π
6
 的范围,由最小值2×(-1)+a+1=0,求出a的值.
解答:解:(1)y=f(x)=2cos2x+2
3
(sinxcosx+
3
6
a)
=cos2x+
3
sin2x+1+a
=2sin(2x+
π
6
)+a+1

2x+
π
6
=kπ+
π
2
?x=
2
+
π
6
(k∈Z)

(2)由角C为△ABC的三个内角中的最大角可得:
π
3
≤C<π?2C+
π
6
∈[
5
6
π,
13
6
π)

y=f(C)=2sin(2C+
π
6
)+a+1
的最小值为:2×(-1)+a+1=0,∴a=1.
点评:本题考查两角和正弦公式,正弦函数的对称性,以及最值,化简函数的解析式,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知O为坐标原点,M(cosx,2
3
),N(2cosx,sinxcosx+
3
6
a)
其中
x∈R,a为常数,设函数f(x)=
OM
ON

(1)求函数y=f(x)的表达式和最小正周期;
(2)若角C为△ABC的三个内角中的最大角且y=f(C)的最小值为0,求a的值;
(3)在(2)的条件下,试画出y=f(x)(x∈[0,π])的简图.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O为坐标原点,M(cosx,2
3
),N(2cosx,sinxcosx+
3
6
a)
其中x∈R,a为常数,设函数f(x)=
OM
ON

(1)求函数y=f(x)的表达式;
(2)若角C∈[
π
3
,π)
且y=f(C)的最小值为0,求a的值;
(3)在(2)的条件下,试画出y=f(x)(x∈[0,π])的简图.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知O为坐标原点,M(cosx,2
3
),N(2cosx,sinxcosx+
3
6
a)
其中x∈R,a为常数,
设函数f(x)=
OM
ON

(Ⅰ)求函数y=f(x)的表达式和对称轴方程;
(Ⅱ)若角C为△ABC的三个内角中的最大角,且y=f(C)的最小值为0,求a的值.

查看答案和解析>>

科目:高中数学 来源:0104 模拟题 题型:解答题

已知O为坐标原点,M(cosx,2),N(2cosx,sinxcosx+a),其中x∈R,a为常数,设函数
(1)求函数y=f(x)的表达式和最小正周期;
(2)若角C为△ABC的三个内角中的最大角且y=f(C)的最小值为0,求a的值。

查看答案和解析>>

同步练习册答案