精英家教网 > 高中数学 > 题目详情

.设f(x)=x2-4x-4,x∈[t,t+1](t∈R),求函数f(x)的最小值的解析式,并作出此解析式的图象.

解:f(x)=x2-4x-4=(x-2)2-8,即抛物线开口向上,对称轴为x=2,最小值为-8,过点(0,-4),
结合二次函数的图象可知:
当t+1<2,即t<1时,f(x)=x2-4x-4,x∈[t,t+1](t∈R)在x=t+1处取最小值f(t+1)=t2-2t-7,
,即1≤t≤2时,f(x)=x2-4x-4,x∈[t,t+1](t∈R)在x=2处取最小值-8,
当t>2时,f(x)=x2-4x-4,x∈[t,t+1](t∈R)在x=t处取最小值f(t)=t2-4t-4,
即最小值为g(t),由以上分析可得,,作图象如下;

分析:f(x)=x2-4x-4=(x-2)2-8,即抛物线开口向上,对称轴为x=2,最小值为-8,过点(0,-4),通过数形结合得出分段函数,再作出其图象即可.
点评:本题为二次函数的区间最值问题,分类讨论是解决问题的关键,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=x2-4x+m,g(x)=x+
4
x
在区间D=[1,3]上,满足:对于任意的a∈D,存在实数x0∈D,使得f(x0)≤f(a),g(x0)≤g(a)且g(x0)=f(x0);那么在D=[1,3]上f(x)的最大值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=
x2,x∈[0,1]
1
x
,x∈[1,e2]
(其中e为自然对数的底数),则
e2
0
f(x)dx
的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=
x2,x∈[0,1]
2-x,x∈(1,2]
,函数图象与x轴围成封闭区域的面积为(  )
A、
3
4
B、
4
5
C、
5
6
D、
6
7

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x2+px+q,满足f(1)=f(2)=0,求f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|f(x)=x},B={x|f[f(x)]=x}.
(1)设f(x)=x2-x-3,求集合A与B;
(2)设f(x)=x2-(2a-1)x+a2(常数a∈R),求证:A=B.
(3)猜测集合A与B的关系并给予证明.

查看答案和解析>>

同步练习册答案