精英家教网 > 高中数学 > 题目详情

已知在(数学公式-数学公式n的展开式中,第6项为常数项.
(1)求n;
(2)求含x2的项的系数;
(3)求展开式中所有的有理项.

解:(1)通项公式为
Tr+1=Cnrx(-3)rx-=Cnr(-3)rx
∵第6项为常数项,
∴r=5时,有=0,
∴n=10.
(2)令=2,
得r=(n-6)=2,
∴所求的系数为C102(-3)2=405.

(3)根据通项公式,由题意,得
=k(k∈Z),则10-2r=3k,r=5-k.
∵r∈N,∴k应为偶数.故k可取-2,0,2,即r可取2,5,8,
所以第3项、第6项、第9项为有理项,它们分别为:C102(-3)2x2、C102(-3)5、C108(-3)8x-2
分析:(1)利用二项展开式的通项公式求出通项,令r=5时x的指数为0,求出n.
(2)将n的值代入通项,令x的指数为2,求出展开式中含x2的项的系数.
(3)令通项中x的指数为整数,求出展开式的有理项.
点评:本题考查利用二项展开式的通项公式解决二项展开式的特定项问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知三棱锥A-BCD的底面是等边三角形,三条侧棱长都等于1,且∠BAC=30°,M,N分别在棱AC和AD上.
(1)将侧面沿AB展开在同一个平面上,如图②所示,求证:∠BAB′=90°.
(2)求BM+MN+NB的最小值.
(3)当BM+MN+NB取得最小值时,证明:CD∥平面BMN

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知三棱锥A-BCD的底面是等边三角形,三条侧棱长都等于1,且∠BAC=30°,M,N分别在棱AC和AD上.
(1)将侧面沿AB展开在同一个平面上,如图②所示,求证:∠BAB′=90°.
(2)求BM+MN+NB的最小值.
(3)当BM+MN+NB取得最小值时,证明:CD∥平面BMN

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省汕尾市陆丰市新龙中学高一(上)第二次月考数学试卷(解析版) 题型:解答题

如图,已知三棱锥A-BCD的底面是等边三角形,三条侧棱长都等于1,且∠BAC=30°,M,N分别在棱AC和AD上.
(1)将侧面沿AB展开在同一个平面上,如图②所示,求证:∠BAB′=90°.
(2)求BM+MN+NB的最小值.
(3)当BM+MN+NB取得最小值时,证明:CD∥平面BMN

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省汕尾市陆丰市新龙中学高一(上)第二次月考数学试卷(解析版) 题型:解答题

如图,已知三棱锥A-BCD的底面是等边三角形,三条侧棱长都等于1,且∠BAC=30°,M,N分别在棱AC和AD上.
(1)将侧面沿AB展开在同一个平面上,如图②所示,求证:∠BAB′=90°.
(2)求BM+MN+NB的最小值.
(3)当BM+MN+NB取得最小值时,证明:CD∥平面BMN

查看答案和解析>>

科目:高中数学 来源:2006-2007学年广东省广州89中学高一(上)期末数学复习试卷(必修1、2)(解析版) 题型:解答题

如图,已知三棱锥A-BCD的底面是等边三角形,三条侧棱长都等于1,且∠BAC=30°,M,N分别在棱AC和AD上.
(1)将侧面沿AB展开在同一个平面上,如图②所示,求证:∠BAB′=90°.
(2)求BM+MN+NB的最小值.
(3)当BM+MN+NB取得最小值时,证明:CD∥平面BMN

查看答案和解析>>

同步练习册答案