(本题满分8分)在正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,满足AE:EB=CF:FA=CP:PB=1:2(如图1)。将△AEF沿EF折起到的位置,使二面角A1-EF-B成直二面角,连结A1B、A1P(如图2)
(Ⅰ)求证:A1E⊥平面BEP;
(Ⅱ)求二面角A1-BP-E的大小。
(Ⅰ)证明略
(Ⅱ)
【解析】不妨设正三角形的边长为3,则
(I)在图1中,取BE的中点D,连结DF,
∵AE∶EB=CF∶FA=1∶2,∴AF=AD=2,而∠A=60o,∴△ADF为正三角形。
又AE=DE=1,∴EF⊥AD。
在图2中,A1E⊥EF,BE⊥EF,∴∠A1EB为二面角A1-EF-B的一个平面角,
由题设条件知此二面角为直二面角,∴A1E⊥BE。
又BEEF=E,∴A1E⊥面BEF,即A1E⊥面BEP。
(II)在图2中,过E点作BP的垂线,并交BP于G点,连接A1G,由(I)知A1E⊥平面BEP,∴ A1GE即为二面角A1-BP-E的平面角,又A1E=1,GE=,∴A1GE=,∴A1GE=,即所求为。
科目:高中数学 来源: 题型:
(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
在数列中,,.
(1)设,证明:数列是等差数列;
(2)设数列的前项和为,求的值;
(3)设,数列的前项和为,,是否存在实数,使得对任意的正整数和实数,都有成立?请说明理由.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年上海市长宁区高三教学质量测试理科数学 题型:解答题
(本题满分12分)本题共有2个小题,第1小题满分8分,第2小题满分4分.
在正四棱柱中,已知底面的边长为2,点P是的中点,直线AP与平面成角.
(文)(1)求的长;
(2)求异面直线和AP所成角的大小.(结果用
反三角函数值表示);
(理)(1)求异面直线和AP所成角的大小.(结果用
反三角函数值表示) ;
(2)求点到平面的距离.
查看答案和解析>>
科目:高中数学 来源:上海市闵行区2010届高三第二次模拟考试数学文 题型:解答题
(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
在数列中,,.
(1)设,证明:数列是等差数列;
(2)设数列的前项和为,求的值;
(3)设,数列的前项和为,,是否存在实数,使得对任意的正整数和实数,都有成立?请说明理由.
查看答案和解析>>
科目:高中数学 来源:上海市闵行区2010届高三第二次模拟考试数学文 题型:解答题
(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
在数列中,,.
(1)设,证明:数列是等差数列;
(2)设数列的前项和为,求的值;
(3)设,数列的前项和为,,是否存在实数,使得对任意的正整数和实数,都有成立?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com