精英家教网 > 高中数学 > 题目详情

数列{an}通项公式为数学公式,则数列{an}前n项和为Sn=________.


分析:由 =,利用裂项相消法可求数列的和
解答:∵=
Sn=
==
故答案为
点评:本题主要考查了利用裂项求解数列的和,注意对通项公式=的变形,不要漏掉了系数
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}中,a1=3,an+1-2 an=0,数列{bn}中,bn•an=(-1)n(n∈N*).
(Ⅰ)求数列{an}通项公式;
(Ⅱ)求数列{bn}通项公式以及前n项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an} 前n项和Sn=2n2+n,则数列{an} 通项公式为
an=4n-1
an=4n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=0,a2=2,且当n≥2时,数列{an}的前n项和Sn满足Sn=
nan
2

(I)求数列{an}通项公式;
(Ⅱ)令Pn=
Sn+2
Sn+1
+
Sn+1
Sn+2
,Qn是数列{Pn}的前n项和,求证:Qn<2n+3.

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}通项公式an=
1n(n+1)
(n∈N+)
,Sn为其前n项和,
(1)试计算S1,S2,S3的值;
(2)猜测出Sn的公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}前n项和记为Sn,且an>0,Sn=
1
8
(an+2)2(n∈N*)

(1)求数列{an}通项公式an
(2)若bn满足bn=(t-1)
an+2
4
(t>1)
,Tn为数列{bn}前n项和,求:Tn
(3)在(2)的条件下求
lim
n→∞
Tn
Tn+1

查看答案和解析>>

同步练习册答案