精英家教网 > 高中数学 > 题目详情

在数列{an}中,a1=2,an+l=an+cn (n∈N*,常数c≠0),且a1,a2,a3成等比数列.
(I)求c的值;
(Ⅱ)求数列{an}的通项公式.

解:(Ⅰ)由题知,a1=2,a2=2+c,a3=2+3c,
因为a1,a2,a3成等比数列,所以(2+c)2=2(2+3c),
解得c=0或c=2,又c≠0,故c=2.
   (Ⅱ)当n≥2时,由an+1=an+cn
得a2-a1=c,
a3-a2=2c,

an-an-1=(n-1)c,
以上各式相加,得
又a1=2,c=2,故
当n=1时上式也成立,
所以数列{an}的通项公式为.(n∈N*).
分析:(I)由题知,a1=2,a2=2+c,a3=2+3c,根据a1,a2,a3成等比数列,列出关于c的方程并求解即可.
     (Ⅱ)利用累加法可以求得,利用(Ⅰ)求得的c,代入求出通项.
点评:本题考查了等比数列的定义、性质,累加法求通项.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,
a
 
1
=1
an=
1
2
an-1+1
(n≥2),则数列{an}的通项公式为an=
2-21-n
2-21-n

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a 1=
1
3
,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=
1
an
(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{
an
n
}的前n项和为Tn,证明:
1
3
Tn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a=
12
,前n项和Sn=n2an,求an+1

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=a,前n项和Sn构成公比为q的等比数列,________________.

(先在横线上填上一个结论,然后再解答)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省汕尾市陆丰市碣石中学高三(上)第四次月考数学试卷(理科)(解析版) 题型:解答题

在数列{an}中,a,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{}的前n项和为Tn,证明:

查看答案和解析>>

同步练习册答案