精英家教网 > 高中数学 > 题目详情

已知M={x∈R|x≥2},a=π,给定下列关系:①a∈M;②{a}M;③aM;④{a}∈M.其中正确的是

[  ]
A.

①②

B.

C.

D.

①②④

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知M={y∈R|y=|x|},N={x∈R|xm2},则下列关系中正确的是     (  )

A.MN                     B.MN

C.MN                     D.NM

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x|mx|(x∈R),且f(4)=0.

(1)求实数m的值;

(2)作出函数f(x)的图像;

(3)根据图像指出f(x)的单调递减区间;

(4)根据图像写出不等式f(x)>0的解集;

(5)求当x∈[1,5)时函数的值域.

查看答案和解析>>

科目:高中数学 来源:2013届新课标高三配套第四次月考文科数学试卷(解析版) 题型:解答题

已知函数f(x)=x3+x2-ax-a,x∈R,其中a>0.

(1)求函数f(x)的单调区间;

(2)若函数f(x)在区间(-2,0)内恰有两个零点,求a的取值范围;

(3)当a=1时,设函数f(x)在区间[t,t+3]上的最大值为M(t),最小值为m(t),记g(t)=M(t)-m(t),求函数g(t)在区间[-3,-1]上的最小值.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省高三下学期开学质量检测数学试卷 题型:解答题

(本小题满分16分)已知函数f(x)=是定义在R上的奇函数,其值域为.

(1) 试求a、b的值;

(2) 函数y=g(x)(x∈R)满足:

条件1: 当x∈[0,3)时,g(x)=f(x);条件2: g(x+3)=g(x)lnm(m≠1).

① 求函数g(x)在x∈[3,9)上的解析式;

② 若函数g(x)在x∈[0,+∞)上的值域是闭区间,试探求m的取值范围,并说明理由.

 

查看答案和解析>>

同步练习册答案