精英家教网 > 高中数学 > 题目详情

当n为正整数时,比较(n+1)n与nn+1的大小,下列判断正确的是

[  ]
A.

对任何正整数都有(n+1)n>nn+1

B.

当n≥3时,nn+1>(n+1)n

C.

当n≥4时,nn+1>(n+1)n

D.

当n≥5时,nn+1>(n+1)n

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}满足a1=a,a2=-a(a>0),且{an}从第二项起是公差为6的等差数列,Sn是{an}的前n项和.
(1)当n≥2时,用a与n表示an与Sn
(2)若在S6与S7两项中至少有一项是Sn的最小值,试求a的取值范围;
(3)若a为正整数,在(2)的条件下,设Sn取S6为最小值的概率是p1,Sn取S7为最小值的概率是p2,比较p1与p2的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列{an}满足a1=a,a2=-a(a>0),且{an}从第二项起是公差为6的等差数列,Sn是{an}的前n项和.
(1)当n≥2时,用a与n表示an与Sn
(2)若在S6与S7两项中至少有一项是Sn的最小值,试求a的取值范围;
(3)若a为正整数,在(2)的条件下,设Sn取S6为最小值的概率是p1,Sn取S7为最小值的概率是p2,比较p1与p2的大小.

查看答案和解析>>

科目:高中数学 来源:2008年上海市嘉定区高考数学一模试卷(文理合卷)(解析版) 题型:解答题

数列{an}满足a1=a,a2=-a(a>0),且{an}从第二项起是公差为6的等差数列,Sn是{an}的前n项和.
(1)当n≥2时,用a与n表示an与Sn
(2)若在S6与S7两项中至少有一项是Sn的最小值,试求a的取值范围;
(3)若a为正整数,在(2)的条件下,设Sn取S6为最小值的概率是p1,Sn取S7为最小值的概率是p2,比较p1与p2的大小.

查看答案和解析>>

科目:高中数学 来源:2011年高三数学第一轮复习巩固与练习:等差数列(解析版) 题型:解答题

数列{an}满足a1=a,a2=-a(a>0),且{an}从第二项起是公差为6的等差数列,Sn是{an}的前n项和.
(1)当n≥2时,用a与n表示an与Sn
(2)若在S6与S7两项中至少有一项是Sn的最小值,试求a的取值范围;
(3)若a为正整数,在(2)的条件下,设Sn取S6为最小值的概率是p1,Sn取S7为最小值的概率是p2,比较p1与p2的大小.

查看答案和解析>>

同步练习册答案