精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是菱形,∠BAD=60°,AB=2,PA=1,PA⊥平面ABCD,E是PC的中点,F是AB的中点.

(Ⅰ)求证:BE∥平面PDF;
(Ⅱ)求平面PAB与平面PCD所成的锐二面角的大小.

【答案】解:(Ⅰ)证明:取PD中点为M,连ME,MF.…1分

∵E是PC的中点

∴ME是△PCD的中位线,

∴ME平行且等于

∵F是AB中点且ABCD是菱形,

∴AB平行且等于CD,

∴ME平行且等于

∴ME平行且等于FB

∴四边形MEBF是平行四边形.从而 BE∥MF.

∵BE平面PDF,MF平面PDF,

∴BE∥平面PDF.

(Ⅱ):∵PA⊥平面ABCD,DF平面ABCD,∴DF⊥PA.连接BD,

∵底面ABCD是菱形,∠BAD=60°,∴△DAB为正三角形.

∵F是AB的中点,∴DF⊥AB.∵PA∩AB=A,∴DF⊥平面PAB.

建立如图所示的坐标系,则P(0,0,1),C( ,3,0),D(0,2,0),F( ,0)

易知 =( ,﹣ ,0)是平面PAB的一个法向量.

设平面PCD的一个法向量为

可取

设平面PAB与平面PCD所成锐角为θ,则cosθ= =

故平面PAB与平面PCD所成的锐角为60°.


【解析】(1)取PD中点为M,连ME,MF,根据中位线性质可得ME平行且等于 C D,根据边的大小关系可得出四边形MEBF是平行四边形,从而 BE∥MF,进而得到BE∥平面PDF,(2)建立空间直角坐标系,用法向量,求出二面角的大小.
【考点精析】掌握直线与平面平行的判定是解答本题的根本,需要知道平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,圆C1:x2+y2=1经过伸缩变换 后得到曲线C2以坐标原点为极点,x轴的正半轴为极轴,并在两种坐标系中取相同的单位长度,建立极坐标系,直线l的极坐标方程为cosθ+2sinθ=
(1)求曲线C2的直角坐标方程及直线l的直角坐标方程;
(2)在C2上求一点M,使点M到直线l的距离最小,并求出最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点M(﹣1,0)和N(1,0),若某直线上存在点P,使得|PM|+|PN|=4,则称该直线为“椭型直线”.现有下列直线:①x﹣2y+6=0;②x﹣y=0;③2x﹣y+1=0;④x+y﹣3=0.其中是“椭型直线”的是(  )
A.①③
B.①②
C.②③
D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的程序框图表示求算式“2×3×5×9×17×33”之值,则判断框内不能填入(  )

A.k≤33
B.k≤38
C.k≤50
D.k≤65

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(  )
A.若a∈R,则“ <1”是“a>1”的必要不充分条件
B.“p∧q为真命题”是“p∨q为真命题”的必要不充分条件
C.若命题p:“x∈R,sinx+cosx≤ ”,则¬p是真命题
D.命题“x0∈R,使得x02+2x0+3<0”的否定是“x∈R,x2+2x+3>0”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将y=cosx的图象上的所有点的纵坐标不变,横坐标缩小到原来的一半,然后再将所得图象向左平移 个单位长度,则最后所得图象的解析式为(  )
A.y=cos(2x+
B.y=cos( +
C.y=sin2x
D.y=﹣sin2x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a∈R,函数f(x)=2ln(x﹣2)﹣a(x﹣2)2
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)若函数f(x)有两个相异零点x1 , x2 , 求证x1x2+4>2(x1+x2)+e(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,且f(2017)=2016,则f(﹣2017)=(  )
A.﹣2014
B.﹣2015
C.﹣2016
D.﹣2017

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线y=x+a与抛物线y2=5ax(a>0)相交于A,B两点,C(0,2a),给出下列4个命题:
p1:△ABC的重心在定直线7x﹣3y=0上,p2:|AB| 的最大值为2
p3:△ABC的重心在定直线 3x﹣7y=0上;p4:|AB| 的最大值为2
其中的真命题为(  )
A.p1 , p2
B.p1 , p4
C.p2 , p3
D.p3 , p4

查看答案和解析>>

同步练习册答案