精英家教网 > 高中数学 > 题目详情

已知函数数学公式,(a>0,且a≠1)
(Ⅰ)求函数的定义域,并证明数学公式在定义域上是奇函数;
(Ⅱ)对于x∈[2,4]数学公式恒成立,求m的取值范围;
(Ⅲ)当n≥2,且n∈N*时,试比较af(2)+f(3)+…+f(n)与2n-2的大小.

解:(Ⅰ)由,解得x<-1或x>1,∴函数的定义域为(-∞,-1)∪(1,+∞).
当x∈(-∞,-1)∪(1,+∞)时,
在定义域上是奇函数.
(Ⅱ)由x∈[2,4]时,恒成立,
①当a>1时,∴对x∈[2,4]恒成立,
∴0<m<(x+1)(x-1)(7-x)在x∈[2,4]恒成立,设g(x)=(x+1)(x-1)(7-x),x∈[2,4],
则g(x)=-x3+7x2+x-7,
∴当x∈[2,4]时,g'(x)>0,∴y=g(x)在区间[2,4]上是增函数,g(x)min=g(2)=15,∴0<m<15.
②当0<a<1时,由x∈[2,4]时,恒成立,
对x∈[2,4]恒成立,∴m>(x+1)(x-1)(7-x)在x∈[2,4]恒成立.
设g(x)=(x+1)(x-1)(7-x),x∈[2,4],由①可知y=g(x)在区间[2,4]上是增函数,
g(x)max=g(4)=45,∴m>45.
(Ⅲ)∵=,∴
当n=2时,,2n-2=2,∴af(2)+f(3)+…+f(n)>2n-2,
当n=3时,,2n-2=6,∴af(2)+f(3)+…+f(n)=2n-2,
当n≥4时,2n-2,下面证明:当n≥4时,2n-2.
证明:当n≥4时,2n-2=Cn0+Cn1+Cn2+…+Cnn-1+Cnn-2=Cn1+Cn2+…+Cnn-1
∴当n≥4时,2n-2.
分析:(Ⅰ) 先求出定义域,利用对数的性质证明f(-x)=-f(x),故函数在定义域内是奇函数.
(Ⅱ) ①当a>1时,有 对x∈[2,4]恒成立,即0<m<(x+1)(x-1)(7-x)
在x∈[2,4]恒成立,利用导数求得(x+1)(x-1)(7-x)的最小值为15,得到 0<m<15.
②当0<a<1时,m>(x+1)(x-1)(7-x)在x∈[2,4]恒成立,利用导数求得 (x+1)(x-1)(7-x) 的最大值
为45,故m>45.
(Ⅲ) n=2 时,af(2)+f(3)+…+f(n)>2n-2. n=3 时,af(2)+f(3)+…+f(n)=2n-2.当n≥4时,
af(2)+f(3)+…+f(n)<2n-2. n≥4时,由 2n-2=Cn0+Cn1+Cn2+…+Cnn-1+Cnn-2=Cn1+Cn2+…+Cnn-1 得到证明.
点评:本题考查利用导数研究函数的单调性和最值,函数的恒成立问题,用放缩法证明不等式,用放缩法证明不等式是解题的
难点.
练习册系列答案
相关习题

科目:高中数学 来源:2010-2011学年湖北省武汉市武昌区高一(下)期末数学试卷(解析版) 题型:解答题

已知函数,其中a>0且a≠1.
(1)求f(x)的解析式;
(2)判断并证明f(x)的单调性;
(3)当x∈(-∞,2)时,f(x)-4的值恒为负数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2013年北京市西城区高考数学二模试卷(文科)(解析版) 题型:解答题

已知函数,其中a>0.
(Ⅰ)若a=2,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求f(x)在区间[2,3]上的最小值.

查看答案和解析>>

科目:高中数学 来源:2010年湖北省实验中学高考最后冲刺数学试卷(理科)(解析版) 题型:选择题

已知函数,(a>0),x∈(0,b),则下列判断正确的是( )
A.当时,f(x)的最小值为
B.当时,f(x)的最小值为
C.当时,f(x)的最小值为
D.对任意的b>0,f(x)的最小值均为

查看答案和解析>>

科目:高中数学 来源:2010-2011学年河南省豫南九校高三第一次联考数学试卷(理科)(解析版) 题型:解答题

已知函数+bx(a>0)且f′(1)=0,
(1)试用含a的式子表示b,并求函数f(x)的单调区间;
(2)已知A(x1,y1),B(x2,y2)(0<x1<x2)为函数f(x)图象上不同两点,G(x,y)为AB的中点,记AB两点连线斜率为K,证明:f′(x)≠K.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省烟台市高三年级期末考试文科数学 题型:选择题

已知函数(其中a>0,且a≠),在同一坐标系中画出其中两个函数在第一象限内的图像,其中正确的是

 

 

 

查看答案和解析>>

同步练习册答案