精英家教网 > 高中数学 > 题目详情

已知函数f(x)是在(0,+∞)上每一点处均可导的函数,若xf′(x)>f(x)在(0,+∞)上恒成立.
(Ⅰ)①求证:函数数学公式在(0,+∞)上是增函数;
②当x1>0,x2>0时,证明:f(x1)+f(x2)<f(x1+x2);
(Ⅱ)已知不等式ln(x+1)<x在x>-1且x≠0时恒成立,求证:数学公式数学公式

解(Ⅰ)①∵,∴
∵xf′(x)>f(x),∴g′(x)>0在(0,+∞)上恒成立,
从而有在(0,+∞)上是增函数.
②由①知在(0,+∞)上是增函数,当x1>0,x2>0时,有
于是有:
两式相加得:f(x1)+f(x2)<f(x1+x2
(Ⅱ)由(Ⅰ)②可知:f(x1)+f(x2)<f(x1+x2),(x1>0,x2>0)恒成立
由数学归纳法可知:xi>0(i=1,2,3,…,n)时,有:f(x1)+f(x2)+f(x3)+…+f(xn)<f(x1+x2+x3+…xn)(n≥2)恒成立
设f(x)=xlnx,则,则xi>0(i=1,2,3,…,n)时,x1lnx1+x2lnx2+…+xnlnxn<(x1+x2+…+xn)ln(x1+x2+…+xn)(n≥2)(*)恒成立
,记

,且ln(x+1)<x
∴(x1+x2+…+xn)ln(x1+x2+…+xn)<(x1+x2+…+xn)ln(1-)<-(x1+x2+…+xn)<--)=- (**)
将(**)代入(*)中,可知:-(
于是
分析:(I)①先利用导数的四则运算,求函数g(x)的导函数,结合已知证明导函数g′(x)>0在(0,+∞)上恒成立,即可证明其在(0,+∞)上是增函数;②利用①的结论,且x1>0,x2>0时,x1+x2>x1,且x1+x2>x2,得,从中解出f(x1)、f(x2)即可证得结论;(II)构造一个符合条件的函数f(x)=xlnx,利用(I)的结论,得x1lnx1+x2lnx2+…+xnlnxn<(x1+x2+…+xn)ln(x1+x2+…+xn)(n≥2),令,再将放缩,即可证得所证不等式
点评:本题综合考查了导数的四则运算,利用导数证明函数的单调性,利用函数的单调性证明不等式,以及利用函数性质构造数列证明数列不等式的方法,难度较大
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)是在(0,+∞)上每一点均可导的函数,若xf/(x)>f(x)在x>0时恒成立.
(1)求证:函数g(x)=
f(x)x
在(0,+∞)上是增函数;
(2)求证:当x1>0,x2>0时,有f(x1+x2)>f(x1)+f(x2);
(3)请将(2)问推广到一般情况,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是在(0,+∞)上每一点处可导的函数,若xf′(x)>f(x)在(0,+∞)上恒成立.
(Ⅰ)求证:函数g(x)=
f(x)
x
在(0,+∞)上单调递增;
(Ⅱ)当x1>0,x2>0时,证明:f(x1)+f(x2)<f(x1+x2);
(Ⅲ)已知不等式ln(1+x)<x在x>-1且x≠0时恒成立,证明:
1
22
ln22+
1
32
ln32+
1
42
ln42+…+
1
(n+1)2
ln(n+1)2
n
2(n+1)(n+2)
(n∈N+).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是在(0,+∞)上每一点处均可导的函数,若xf′(x)>f(x)在(0,+∞)上恒成立.
(Ⅰ)①求证:函数g(x)=
f(x)
x
在(0,+∞)上是增函数;
②当x1>0,x2>0时,证明:f(x1)+f(x2)<f(x1+x2);
(Ⅱ)已知不等式ln(x+1)<x在x>-1且x≠0时恒成立,求证:
1
22
ln22+
1
32
ln32+
1
42
ln42+
+
1
(n+1)2
ln(n+1)2
n
2(n+1)(n+2)
,(n∈N*)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是在(0,+∞)上每一点处可导的函数,若xf′(x)-f(x)>0在x>0上恒成立,且f(x)=xax(a>0,a≠1,x>0),
7f(1)
3
-
f(2)
2
=
2
3
,若数列{
n
f(n)
}(n∈N)的前n项和为Sn,则
lim
n→∞
Sn=(  )
A、
1
2
B、1
C、-2
D、-
3
2

查看答案和解析>>

科目:高中数学 来源:2011年辽宁省名校高三数学单元测试:算法、复数、推理与证明(解析版) 题型:解答题

已知函数f(x)是在(0,+∞)上每一点均可导的函数,若xf/(x)>f(x)在x>0时恒成立.
(1)求证:函数在(0,+∞)上是增函数;
(2)求证:当x1>0,x2>0时,有f(x1+x2)>f(x1)+f(x2);
(3)请将(2)问推广到一般情况,并证明你的结论.

查看答案和解析>>

同步练习册答案