精英家教网 > 高中数学 > 题目详情
已知曲线C:f(x)=x3
(1)利用导数的定义求f(x)的导函数f′(x);
(2)求曲线C上横坐标为1的点处的切线方程.
分析:(1)根据导数的定义求f(x)的导函数f′(x);
(2)根据导数的几何意义求切线方程.
解答:解:(1)设函数f(x)在(x,x+△x)上的平均变化率为
△y
△x
=
f(x+△x)-f(x)
△x
=
(x+△x)3-x3
△x
=
x3+3x2•△x+3x•(△x)2+(△x)3-x3
△x

3x2+3x•△x+(△x)2
∴f'(x)=
lim
△x→0
(3x2+3x•△x+(△x)2)
=3x2
(2)∵f'(x)=3x2
∴f'(1)=3,f(1)=1,
∴曲线C上横坐标为1的点处的切线方程为y-1=3(x-1),即y=3x-2.
点评:本题主要考查导数的定义,以及导数的几何意义,利用导数和瞬时变化率之间的关系求导数是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知曲线C:f(x)=3x2-1,C上的两点A,An的横坐标分别为2与an(n=1,2,3,…),a1=4,数列{xn}满足xn+1=
t
3
[f(xn-1)+1]+1
(t>0且t≠
1
2
,t≠1)
、设区间Dn=[1,an](an>1),当x∈Dn时,曲线C上存在点pn(xn,f(xn)),使得点pn处的切线与AAn平行,
(I)建立xn与an的关系式;
(II)证明:{logt(xn-1)+1}是等比数列;
(III)当Dn+1?Dn对一切n∈N+恒成立时,求t的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C:f(x)=x3+1,则与直线y=-
1
3
x-4
垂直的曲线C的切线方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C:f(x)=x+
ax
(a>0),直线l:y=x,在曲线C上有一个动点P,过点P分别作直线l和y轴的垂线,垂足分别为A,B.再过点P作曲线C的切线,分别与直线l和y轴相交于点M,N,O是坐标原点.则△OMN与△ABP的面积之比为
8
8

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•温州二模)已知曲线C:f(x)=x3-ax+a,
(Ⅰ)若f(x)在区间[1,2]上是增函数,求实数a的取值范围;
(Ⅱ)过C外一点A(1,0)引C的两条切线,若它们的倾斜角互补,求a的值.

查看答案和解析>>

同步练习册答案