精英家教网 > 高中数学 > 题目详情
已知实数a,b,c,d满足a+b+c+d=3,a2+2b2+3c2+6d2=5,求a的取值范围.
分析:先由柯西不等式得(
1
2
+
1
3
+
1
6
)   (2b2+3c2+6d2)≥(b+c+d) 2
从而得到关于a的不等关系:5-a2≥(3-a)2,解之即a的取值范围.
解答:解:由柯西不等式得(
1
2
+
1
3
+
1
6
)   (2b2+3c2+6d2)≥(b+c+d) 2

即2b2+3c2+6d2≥(b+c+d)2
将条件代入可得5-a2≥(3-a)2,解得1≤a≤2
当且仅当
2
b
1
2
=
3
c
1
3
=
6
d
1
6
时等号成立,
可知b=
1
2
,c=
1
3
,d=
1
6
时a最大=2,
b=1,c=
2
3
,d=
1
3
时,a最小=1,
所以:a的取值范围是[1,2].
点评:此题主要考查不等式的证明问题,其中涉及到柯西不等式和基本不等式的应用问题,有一定的技巧性,需要同学们对一般形式的柯西不等式非常熟练.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知实数a,b,c满足a≤b≤c,且ab+bc+ca=0,abc=1,不等式|a+b|≥k|c|恒成立.则实数k的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数a,b,c满足c<b<a且ac<0,则下列选项中一定不成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)若关于x的不等式|x+1|-|x-2|<a的解集不是空集,求实数a的取值范围;
(2)已知实数a,b,c,满足a+b+c=1,求(a-1)2+2(b-2)2+3(c-3)2最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲已知实数a,b,c满足a2+2b2+3c2=24
①求a+2b+3c的最值;
②若满足题设条件的任意实数a,b,c,不等式a+2b+3c>|x+1|-14恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知实数a,b,c,d,e满足a+b+c+d+e=8,a2+b2+c2+d2+e2=16,试确定e的最大值.

查看答案和解析>>

同步练习册答案