精英家教网 > 高中数学 > 题目详情
已知f(x)=|log2(x+1)|,m<n,f(m)=f(n).
(1)比较m+n与0的大小;
(2)比较f(
m+n
m-n
)与f(
m+n
n-m
)的大小.
(1)∵f(m)=f(n),
∴|log2(m+1)|=|log2(n+1)|.
∴log22(m+1)=log22(n+1).
∴[log2(m+1)+log2(n+1)][log2(m+1)-log2(n+1)]=0,
log2(m+1)(n+1)•log2
m+1
n+1
=0.
∵m<n,∴
m+1
n+1
≠1.
∴log2(m+1)(n+1)=0.
∴mn+m+n+1=1.∴mn+m+n=0.
由函数的定义域知 m、n∈(-1,0]或m、n∈[0,+∞)时,
由函数y=f(x)的单调性知x∈(-1,0]时,f(x)为减函数,
x∈[0,+∞)时,f(x)为增函数,f(m)≠f(n).
∴-1<m<0,n>0.∴m•n<0.
∴m+n=-mn>0.

(2)f(
m+n
m-n
)=|log2
2m
m-n
|=-log2
2m
m-n
=log2
m-n
2m

f(
m+n
n-m
)=|log2
2n
n-m
|=log2
2n
n-m

m-n
2m
-
2n
n-m
=
-(m-n)2-4mn
2m(n-m)

=-
(m+n)2
2m(n-m)
>0.
∴f(
m+n
m-n
)>f(
m+n
n-m
).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:044

已知f (x)=lo ga(a>0a≠1)

()f (x)的定义域;

()判断f (x)的奇偶性并予以证明;

()求使f (x)>0x取值范围.

 

查看答案和解析>>

科目:高中数学 来源:数学教研室 题型:044

已知f (x)=lo ga(a>0a≠1)

()f (x)的定义域;

()判断f (x)的奇偶性并予以证明;

()求使f (x)>0x取值范围.

 

查看答案和解析>>

科目:高中数学 来源:湖南省四市九校2009届高三第二次联考数学试卷(理科数学) 题型:044

已知函数g(x)=-4cos2(x+)+4sin(x+)-a,把函数y=g(x)的图象按向量(-,1)平移后得到y=f(x)的图象.

(Ⅰ)求函数y=lo[f(x)+8+a]的值域;

(Ⅱ)当x∈[-]时f(x)=0恒有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)=lo数学公式[3-(x-1)2],求f(x)的值域及单调区间.

查看答案和解析>>

科目:高中数学 来源:2006年高考第一轮复习数学:2.8 对数与对数函数(解析版) 题型:解答题

已知f(x)=lo[3-(x-1)2],求f(x)的值域及单调区间.

查看答案和解析>>

同步练习册答案