精英家教网 > 高中数学 > 题目详情
已知点A(-4,4)、B(4,4),直线AM与BM相交于点M,且直线AM的斜率与直线BM的斜率之差为-2,点M的轨迹为曲线C.
(Ⅰ) 求曲线C 的轨迹方程;
(Ⅱ) Q为直线y=-1上的动点,过Q做曲线C的切线,切点分别为D、E,求△QDE的面积S的最小值.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线中的最值与范围问题
分析:(I)设M(x,y),由题意可得:
y-4
x+4
-
y-4
x-4
=-2
,化简可得曲线C 的轨迹方程为x2=4y且(x≠±4).
(II)设Q(m,-1),切线方程为y+1=k(x-m),与抛物线方程联立化为x2-4kx+4(km+1)=0,由于直线与抛物线相切可得△=0,即k2-km-1=0.解得x=2k.可得切点(2k,k2),由k2-km-1=0.可得k1+k2=m,k1•k2=-1.得到切线QD⊥QE.因此△QDE为直角三角形,S=
1
2
|QD|•|QE|.令切点(2k,k2)到Q的距离为d,则d2=(2k-m)2+(k2+1)2=(4+m2)(k2+1),利用两点之间的距离公式可得|QD|=
(4+m2)(
k
2
1
+1)
,|QE|=
(4+m2)(
k
2
2
+1)
,代入即可得出.
解答: 解:(I)设M(x,y),由题意可得:
y-4
x+4
-
y-4
x-4
=-2

化为x2=4y.
∴曲线C 的轨迹方程为x2=4y且(x≠±4).
(II)设Q(m,-1),切线方程为y+1=k(x-m),
联立
y+1=k(x-m)
x2=4y
,化为x2-4kx+4(km+1)=0,
由于直线与抛物线相切可得△=0,即k2-km-1=0.
∴x2-4kx+4k2=0,解得x=2k.可得切点(2k,k2),
由k2-km-1=0.∴k1+k2=m,k1•k2=-1.
∴切线QD⊥QE.
∴△QDE为直角三角形,S=
1
2
|QD|•|QE|.
令切点(2k,k2)到Q的距离为d,
则d2=(2k-m)2+(k2+1)2=4(k2-km)+m2+(km+2)2=4(k2-km)+m2+k2m2+4km+4=(4+m2)(k2+1),
∴|QD|=
(4+m2)(
k
2
1
+1)

|QE|=
(4+m2)(
k
2
2
+1)

S=
1
2
(4+m2
(k1+k2)2-2k1k2+2
=
1
2
(4+m2)
4+m2
≥4,
当m=0时,即Q(0,-1)时,△QDE的面积S取得最小值4.
点评:本题考查了直线与抛物线相切的性质、切线方程、相互垂直的斜率之间的关系、两点之间的距离公式、三角形的面积计算公式、二次函数的性质,考查了推理能力与计算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列求导过程中(1)(
1
x
)′=-
1
x2
(2)(
x
)′=
1
2
x
(3)(logax)′=(
lnx
lna
)′=
1
xlna
(4)(ax)′=(exlna)′=exlnalna=axlna,其中正确的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集∪={x∈N*|x<9},A={1,2,3},B={3,4,5,6},求∁U(A∪B),∁U(A∩B),(∁UA)∪(∁UB),(∁UA)∩(∁UB),由上面的练习,你能得出什么结论,请结合Venn图进行分析.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知E,F分别为正方体ABCD-A1B1C1D的棱AB,AA1上的点,且AE=
1
2
AB,AF=
1
3
AA1,M,N分别为线段D1E和线段C1F上的点,则与平面ABCD平行的直线MN有(  )
A、1条B、3条C、6条D、无数条

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
AB
=(6,2),
AD
=(-3,1),点A(2,1).
(1)求线段BD的中点M的坐标;
(2)若点P(1,y)满足
PB
BD
(λ∈R),求λ与y的值.
(3)若点C(x,1)满足
BC
AD
,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设F为圆锥曲线的焦点,P是圆锥曲线上任意一点,则定义PF为圆锥曲线的焦半径.下列几个命题
①平面内与两个定点F1,F2的距离之和为常数的点的轨迹是椭圆
②平面内与两个定点F1,F2的距离之差的绝对值为常数的点的轨迹是双曲线
③平面内与一个定点F和一条定直线l的距离相等的点的轨迹是抛物线
④以椭圆的焦半径为直径的圆和以长轴为直径的圆相切
⑤以抛物线的焦半径为直径的圆和y轴相切
⑥以双曲线的焦半径为直径的圆和以实轴为直径的圆相切
其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知小明投10次篮,每次投篮的命中率均为0.7,记10次投篮命中的次数为X,则DX=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x+3|-|x-2|.
①求不等式f(x)≥3的解集;
②若f(x)≥|a-4|有解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+(y-1)2=4,直线l:mx-y+1-3m=0,设l与圆C交于A、B两点,若|AB|=2,求m.

查看答案和解析>>

同步练习册答案