精英家教网 > 高中数学 > 题目详情
设函数f(x)=sinωxcosωx-
3
sin2ωx+a
(ω>0,a∈R),且f(x)的图象在y轴右侧的第一个最高点的横坐标为
π
6

(1)求ω的值;
(2)如果f(x)在区间[-
π
3
, 
6
]
上的最小值为
3
,求a的值.
分析:(1)由二倍角公式和辅助角公式,化简得f(x)=sin(2ωx+
π
3
)+a-
3
2
,再结合正弦函数最大值的结论,解关于ω的方程,即可得ω的值;
(2)根据题意,得x+
π
3
[0,
6
]
,再结合正弦函数图象在区间[0,
6
]
上的单调性,可得当x=
6
时,f(x)有最小值,由此建立关于a的方程,解之即可得到实数a的值.
解答:解:(1)∵sinωxcosωx=
1
2
sin2ωx,sin2ωx=
1
2
(1-cos2ωx)
∴f(x)=
1
2
sin2ωx-
3
2
(1-cos2ωx)+a=sin(2ωx+
π
3
)+a-
3
2

∵f(x)的图象在y轴右侧的第一个最高点的横坐标为
π
6

∴当x=
π
6
时,2ωx+
π
3
=
π
2
+2kπ,(k∈Z),即
π
3
ω+
π
3
=
π
2
+2kπ,(k∈Z),可得
π
3
ω=
π
6
+2kπ,(k∈Z)
结合ω>0,得整数k=0时,ω=
1
2

(2)由(1),得f(x)=sin(x+
π
3
)+a-
3
2

∵x∈[-
π
3
, 
6
]
,得x+
π
3
[0,
6
]

∴当x=
6
时,x+
π
3
=
6
,此时f(x)有最小值-
1
2
+a-
3
2
=
3

由此可得:a=
3
3
+1
2
点评:本题给出三角函数式,求函数的单调区间和在闭区间上的最值,着重考查了三角恒等变换和三角函数的图象与性质等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•安徽模拟)设函数f(x)=sin(x+
π
6
)+2sin2
x
2
,x∈[0,π]

(Ⅰ)求f(x)的值域;
(Ⅱ)记△ABC的内角A、B、C的对边长分别为a,b,c,若f(B)=1,b=1,c=
3
,求a
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(ωx+φ)(ω>0,-
π
2
<φ<
π
2
)
,给出以下四个论断:
①它的图象关于直线x=
π
12
对称;     
②它的图象关于点(
π
3
,0)
对称;
③它的周期是π;                   
④在区间[0,
π
6
)
上是增函数.
以其中两个论断作为条件,余下的一个论断作为结论,写出你认为正确的命题:
条件
①③
①③
结论
;(用序号表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(ωx+
π
4
)(x∈R,ω>0)
的部分图象如图所示.
(1)求f(x)的表达式;
(2)若f(x)•f(-x)=
1
4
x∈(
π
4
π
2
)
,求tanx的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(2x+
π
3
)
,则下列结论正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sinωx+2
3
sin2
ωx
2
(ω>0)的最小正周期为
3

(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若将y=f(x)的图象向左平移
π
2
个单位可得y=g(x)的图象,求不等式g(x)≥2
3
的解集.

查看答案和解析>>

同步练习册答案