精英家教网 > 高中数学 > 题目详情
先后抛掷一枚形状为正方体的骰子(正方体的六个面上分别标以数字1、2、3、4、5、6),骰子向上的点数依次为x,y.
(I) 共有多少个基本事件?
(II) 设“x≠y”为事件A,求事件A发生的概率;
(Ⅲ)设“x+y=6”为事件B,求事件B发生的概率.
分析:(I)由后抛掷一枚形状为正方体的骰子2次,这是一个分步事件,每一步有6种情况,代入分步乘法公式即可计算出基本事件总数.
(II)若“x≠y”为事件A,则“x=y”即为A的对立事件,求出其概率后,根据对立事件概率减法公式,即可求出事件A发生的概率.
(III)列举出满足条件“x+y=6”的所有基本事件,计算出个数后,代入古典概型概率计算公式,即可得到事件B发生的概率.
解答:解:(I) 第一次抛掷骰子有6种结果,第二次抛掷骰子也有6种结果,于是一共有:6×6=36种不同结果,因此共有36个基本事件.…(3分)
(II)A的对立事件
.
A
:x=y,
共有x=y=1、x=y=2、x=y=3、x=y=4、x=y=5、x=y=6六种,
P(
.
A
)=
6
36
=
1
6
.…(6分)
P(A)=1-P(
.
A
)=1-
1
6
=
5
6

答:事件A发生的概率为
5
6
.…(8分)
(Ⅲ)满足“x+y=6”数对(x,y)共有(1,5)、(2,4)、(3,3)、(4.2)、(5,1)五对,
P(B)=
5
6×6
=
5
36
,…(10分)
答:事件B发生的概率为
5
36
.…(12分)
点评:本题考查的知识点是等可能事件的概率,古典概型概率计算公式,其中计算出所有基本事件的个数及满足条件的基本事件个数,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题满分12分)将一枚质地均匀的骰子(形状为正四面体,四个面上分别标有数字

1,2,3,4的玩具)先后抛掷两次,观察抛掷后不能看到的数字的点数依次为

(1)求的概率;(2)试将右侧求(1)中概率P的基本语句补充完整;(3)将a,b,3的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.

查看答案和解析>>

同步练习册答案