精英家教网 > 高中数学 > 题目详情

知圆C1的方程为(x-2)2+(y-1)2=,椭圆C2的方程为=1(ab>0),C2的离心率为,如果C1C2相交于AB两点,且线段AB恰为圆C1的直径,求直线AB的方程和椭圆C2的方程.

椭圆方程为=1.


解析:

e=,可设椭圆方程为=1,

又设A(x1,y1)、B(x2,y2),则x1+x2=4,y1+y2=2,

=1,两式相减,得=0,

即(x1+x2)(x1x2)+2(y1+y2)(y1y2)=0.

化简得=-1,故直线AB的方程为y=-x+3,

代入椭圆方程得3x2-12x+18-2b2=0.

Δ=24b2-72>0,又|AB|=,

,解得b2=8.

故所求椭圆方程为=1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知圆C1的方程为(x-2)2+(y-1)2=
20
3
,椭圆C2的方程为
x2
a2
+
y2
b2
=1
(a>b>0),C2的离心率为
2
2
,如果C1与C2相交于A、B两点,且线段AB恰为圆C1的直径,求直线AB的方程和椭圆C2的方程.

查看答案和解析>>

科目:高中数学 来源:2012-2013年山东济宁泗水一中高二12月质量检测理科数学试卷(带解析) 题型:解答题

(本小题满分12分)
已知圆C1的方程为(x-2)2+(y-1)2=,椭圆C2的方程为,C2的离心率为,如果C1与C2相交于A、B两点,且线段AB恰为圆C1的直径,试求:
(1)直线AB的方程;(2)椭圆C2的方程.

查看答案和解析>>

科目:高中数学 来源:2014届山东济宁泗水一中高二12月质量检测理科数学试卷(解析版) 题型:解答题

(本小题满分12分)

已知圆C1的方程为(x-2)2+(y-1)2=,椭圆C2的方程为,C2的离心率为,如果C1与C2相交于A、B两点,且线段AB恰为圆C1的直径,试求:

(1)直线AB的方程;(2)椭圆C2的方程.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C1的方程为(x-2)2+(y-1)2=,椭圆C2的方程为=1(ab

0),C2的离心率为,如果C1C2相交于AB两点,且线段AB恰为圆C1的直径,求直线AB的方程和椭圆C2的方程  

查看答案和解析>>

同步练习册答案