精英家教网 > 高中数学 > 题目详情
设f(x)=x3+mx2+nx.
(1)如果g(x)=f′(x)-2x-3在x=-2处取得最小值-5,求f(x)的解析式;
(2)如果m+n<10(m,n∈N+),f(x)在单调递减区间的长度是正整数,试求m和n的值.(注:区间(a,b)的长度为b-a)
【答案】分析:(1)先由导数知识求出g(x),然后利用配方法把二次函数g(x)表示成顶点式,再根据g(x) 在x=-2处取得最小值-5,可列方程组求得m、n的值,则问题解决.
(2)首先求出f(x)的导函数f′(x)=x2+2mx+n(二次函数),然后根据f(x)的单调递减区间的长度是正整数,可判断函数f′(x)=x2+2mx+n有两个不同的零点x1、x2,且利用根与系数的关系能表示出|x1-x2|=2,再由“此长度是正整数”且“m+n<10(m,n∈N+)”为突破口,对m、n进行分类讨论,最后找到满足要求的m、n.
解答:解:(1)由题意得g(x)=f′(x)-2x-3=x2+2mx+n-2x-3=(x+m-1)2+(n-3)-(m-1)2
又g(x) 在x=-2处取得最小值-5,
所以,解得m=3,n=2.
所以f(x)=x3+3x2+2x. 
(2)因为f′(x)=x2+2mx+n且f(x)的单调递减区间的长度是正整数,
所以方程f′(x)=0,即x2+2mx+n=0必有两不等实根,
则△=4m2-4n>0,即m2>n.
不妨设方程f′(x)=0的两根分别为x1、x2,则|x1-x2|==2且为正整数.
又因为m+n<10(m,n∈N+),所以m≥2时才能有满足条件的m、n.
当m=2时,只有n=3符合要求;
当m=3时,只有n=5符合要求;
当m≥4时,没有符合要求的n.
故只有m=2,n=3或m=3,n=5满足上述要求.
点评:本题考查了幂函数的求导公式、二次函数的最值及一元二次方程根与系数的关系;更主要的是考查利用导数研究函数单调性的方法及分类讨论的思想方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=x3,等差数列{an}中a3=7,a1+a2+a3=12,记Sn=f(
3an+1
)
,令bn=anSn,数列{
1
bn
}
的前n项和为Tn
(Ⅰ)求{an}的通项公式和Sn
(Ⅱ)求证:Tn
1
3

(Ⅲ)是否存在正整数m,n,且1<m<n,使得T1,Tm,Tn成等比数列?若存在,求出m,n的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x3-
x22
-2x+5.
(1)求f(x)的单调区间;
(2)当x∈[1,2]时,f(x)<m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x3-
12
x2-2x+5

(1)求函数f(x)的单调递增,递减区间;
(2)当x∈[-1,2]时,f(x)<m恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x3-
x22
-2x

(1)求函数f(x)的极值;
(2)当x∈[-1,2]时,f(x)<m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=-x3+bx2+cx,其导函数y=f'(x)的图象经过点(-2,0),(
23
 , 0)

(Ⅰ)求f(x)的极小值;
(Ⅱ)方程f(x)+p=0有唯一实数解,求p的取值范围;
(Ⅲ)若对x∈[-3,3],都有f(x)≥m2-14m恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案