精英家教网 > 高中数学 > 题目详情
为了净化空气,某科研单位根据实验得出,在一定范围内,每喷洒1个单位的净化剂,空气中释放的浓度y(单位:毫克/立方米)随着时间(单位:天)变化的函数关系式近似为若多次喷洒,则某一时刻空气中的净化剂浓度为每次投放的净化剂在相应时刻所释放的浓度之和.由实验知,当空气中净化剂的浓度不低于4(毫克/立方米)时,它才能起到净化空气的作用.
(1)若一次喷洒4个单位的净化剂,则净化时间可达几天?
(2)若第一次喷洒2个单位的净化剂,6天后再喷洒a)个单位的药剂,要使接下来的4天中能够持续有效净化,试求的最小值(精确到0.1,参考数据:取1.4).
(1)可达8天;(2)a的最小值为

试题分析:(1)根据题中条件每喷洒1个单位的净化剂,空气中释放的浓度y(单位:毫克/立方米)随着时间(单位:天)变化的函数关系已经给出,则易得一次喷洒4个单位的净化剂时的函数关系式:,这样就得到一个分段函数,对分段函数的处理常用的原则:先分开,现合并,解两个不等式即可求解; (2)中若第一次喷洒2个单位的净化剂,6天后再喷洒a)个单位的药剂,根据题意从第6天开始浓度来源与两方面,这是题中的难点,前面留下的为:,后面新增的为:,所得化简即可得到:,结合基本不等式知识求出最小值,最后解一个不等式:,即可求解.
试题解析:(1)因为一次喷洒4个单位的净化剂,
所以浓度
则当时,由,解得,所以此时.        3分
时,由解得,所以此时
综合得,若一次投放4个单位的制剂,则有效净化时间可达8天.       7分
(2)设从第一次喷洒起,经x)天,
浓度.  10分
因为,而
所以,故当且仅当时,y有最小值为.
,解得,所以a的最小值为.    14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设函数,其中为正整数,均为常数,曲线处的切线方程为.
(1)求的值;     
(2)求函数的最大值;
(3)证明:对任意的都有.(为自然对数的底)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

是实数,函数).
(1)求证:函数不是奇函数;
(2)当时,求满足的取值范围;
(3)求函数的值域(用表示).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某通讯公司需要在三角形地带区域内建造甲、乙两种通信信号加强中转站,甲中转站建在区域内,乙中转站建在区域内.分界线固定,且=百米,边界线始终过点,边界线满足
()百米,百米.

(1)试将表示成的函数,并求出函数的解析式;
(2)当取何值时?整个中转站的占地面积最小,并求出其面积的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数.
(1)设,证明:在区间内存在唯一的零点;
(2)设,若对任意,有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

有且仅有三个解,则实数 的取值范围是
A.[1,2]B.(-∞,2)C.[1,+∞)D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设定义在上的函数是最小正周期为的偶函数,的导函数,当时;;当时,,则函数在区间上的零点个数为(   )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

要在墙上开一个上半部为半圆形、下部为矩形的窗户(如图所示),在窗框为定长的条件下,要使窗户能够透过最多的光线,窗户应设计成怎样的尺寸?

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数,则    

查看答案和解析>>

同步练习册答案