精英家教网 > 高中数学 > 题目详情

【题目】数列{an}满足a1=1, (n∈N+).
(1)证明:数列 是等差数列;
(2)求数列{an}的通项公式an
(3)设bn=n(n+1)an , 求数列{bn}的前n项和Sn

【答案】
(1)证明:由已知可得

∴数列 是公差为1的等差数列


(2)解:知


(3)解: 由(2)知bn=n2n

Sn=12+222+323++n2n

2Sn=122+223+…+(n﹣1)2n+n2n+1

相减得: =2n+1﹣2﹣n2n+1∴Sn=(n﹣1)2n+1+2


【解析】(1)由已知中 (n∈N+),我们易变形得: ,即 ,进而根据等差数列的定义,即可得到结论;(2)由(1)的结论,我们可以先求出数列 的通项公式,进一步得到数列{an}的通项公式an;(3)由(2)中数列{an}的通项公式,及bn=n(n+1)an , 我们易得到数列{bn}的通项公式,由于其通项公式由一个等差数列与一个等比数列相乘得到,故利用错位相消法,即可求出数列{bn}的前n项和Sn
【考点精析】利用数列的前n项和和数列的通项公式对题目进行判断即可得到答案,需要熟知数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 底面 的中点.

(Ⅰ)证明

(Ⅱ)证明平面

(Ⅲ)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)的二次项系数为a(a<0),且1和3是函数y=f(x)+2x的两个零点.若方程f(x)+6a=0有两个相等的根,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知+=1(a>>0)点A(1,)是离心率为的椭圆C:上的一点,斜率为的直线BD交椭圆C于B、D两点,且A、B、D三点不重合.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求△ABD面积的最大值;
(Ⅲ)设直线AB、AD的斜率分别为k1 , k2 , 试问:是否存在实数λ,使得k1+λk2=0成立?若存在,求出λ的值;否则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设{an}是正项等比数列,令Sn=lga1+lga2+…+lgan , n∈N* , 若存在互异的正整数m,n,使得Sm=Sn , 则Sm+n=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司研究开发了一种新产品,生产这种新产品的年固定成本为150万元,每生产千件,需另投入成本为 (万元), .每件产品售价为500元.该新产品在市场上供不应求可全部卖完.

(Ⅰ)写出年利润(万元)关于年产量千件)的函数解析式;

(Ⅱ)当年产量为多少千件时,该公司在这一新产品的生产中所获利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行下面的程序框图,若p=0.95,则输出的n=(

A.4
B.5
C.6
D.7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点, 轴的非负半轴为极轴建立极坐标系.已知点的极坐标为,曲线的参数方程为为参数).

(1)直线且与曲线相切,求直线的极坐标方程;

(2)点与点关于轴对称,求曲线上的点到点的距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了准确地把握市场,做好产品生产计划,对过去四年的数据进行整理得到了第年与年销量 (单位:万件)之间的关系如表:

(Ⅰ)在图中画出表中数据的散点图;

(Ⅱ)根据(Ⅰ)中的散点图拟合的回归模型,并用相关系数甲乙说明;

(Ⅲ)建立关于的回归方程,预测第5年的销售量约为多少?.

附注:参考数据: .

参考公式:相关系数

回归方程中斜率和截距的最小二乘法估计公式分别为:

.

查看答案和解析>>

同步练习册答案