精英家教网 > 高中数学 > 题目详情
己知,求函数y=9x-2•3x+5的值域.
【答案】分析:先由得到x的范围,再用t将3x换元,转化为二次函数在给定区间上最值问题,利用配方法,可求函数的值域.
解答:解:由于,则2-1≤2x≤(2-2x-3
解得-1≤x≤2
若设3x=t,则t∈[,9]
y=9x-2•3x+5=t2-2t+5=(t-1)2+4
∵t∈[,9],
∴t=1时,ymin=4;t=9时,ymax=68
∴函数的值域为[4,68].
点评:本题考查复合函数的值域,考查换元法的运用,考查配方法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

己知
1
2
2x≤(
1
4
)x-3
,求函数y=9x-2•3x+5的值域.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

己知
1
2
2x≤(
1
4
)x-3
,求函数y=9x-2•3x+5的值域.

查看答案和解析>>

同步练习册答案