已知几何体A―BCED的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形.
(1)求此几何体的体积V的大小;
(2)求异面直线DE与AB所成角的余弦值;
(3)试探究在DE上是否存在点Q,使得AQBQ并说明理由(一、二、五中必做,其它学校选做).
解析:(1)由该几何体的三视图知面,且EC=BC=AC=4 ,BD=1,
∴
∴.
即该几何体的体积V为16. -----------3分
(2)解法1:过点B作BF//ED交EC于F,连结AF,
则∠FBA或其补角即为异面直线DE与AB所成的角.-------5分
在△BAF中,∵AB=,BF=AF=.
∴.
即异面直线DE与AB所成的角的余弦值为.------------------------------------------7分
解法2:以C为原点,以CA,CB,CE所在直线为x,y,z轴建立空间直角坐标系.
则A(4,0,0),B(0,4,0),D(0,4,1),E(0,0,4)
∴,∴
∴异面直线DE与AB所成的角的余弦值为.
(3)解法1:在DE上存在点Q,使得AQBQ.--------------------------------------------------8分
取BC中点O,过点O作OQ⊥DE于点Q,则点Q满足题设.
连结EO、OD,在Rt△ECO和Rt△OBD中
∵ ∴∽ ∴
∵ ∴ ∴.-----------------10分
∵,
∴
∴以O为圆心、以BC为直径的圆与DE相切.切点为Q
∴
∵面,面 ∴ ∴面
∵面ACQ w.w.w.k.s.5.u.c.o.m
∴.-------------------------------------------------------------------------12分
解法2: 以C为原点,以CA,CB,CE所在直线为x,y,z轴建立空间直角坐标系.
设满足题设的点Q存在,其坐标为(0,m,n),则
,
∵AQBQ ∴ ----------------------------①
∵点Q在ED上,∴存在使得
∴-----------②
②代入①得,解得
∴满足题设的点Q存在,其坐标为
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2009-2010学年广东省广州市海珠区高一(上)学业质量监测数学试卷(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com