精英家教网 > 高中数学 > 题目详情
设函数=ax3+bx2+cx+d的图象与y轴的交点为P,且曲线在P点处的切线方程为24x+y-12=0,若函数在x=2处取得极值-16.试求函数解析式,并确定函数的单调减区间.

      

解析:由y′=3ax2+2bx+c=c,?

       ∵切线24x+y-12=0的斜率k=-24,?

       ∴c=-24.?

       把x=0代入24x+y-12=0,得y=12.?

       得P的坐标为(0,12),由此得d=12, 即可写成=ax3+bx2-24x+12.?

       由函数x=2处取得极值-16,得解得

       ∴=x3+3x2-24x+12,f′(x)=3x2+6x-24.?

       令<0,得-4<x<2.?

       ∴所求递减区间为(-4,2).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ax3+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处的切线与直线x+18y-7=0垂直,导函数f′(x)的最小值为12.
(1)求a,b,c的值;
(2)设g(x)=
f(x)x2
,当x>0时,求g(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax3+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直,导函数f′(x)的最小值为-12.
(Ⅰ)求a,b,c的值;
(Ⅱ)求函数f(x)的单调递增区间,并求函数f(x)在[-1,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax3+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直,导函数f′(x)的最小值为-12
(1)求a,b,c的值;
(2)求函数f(x)的单调增区间,并求函数f(x)在[-1,3]上的最大值和最小值
(3)若对任意x∈(0,m),都有f(x)<6x恒成立,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数 f(x)=ax3+bx+c是定义在R上的奇函数,且函数f(x)的图象在x=1处的切线方程y=3x+2.
(Ⅰ)求函数f(x) 的表达式;
(Ⅱ)若对任意x∈(0,1]都有f(x)<
mx
成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax3-(a+b)x2+bx+c,其中a>0.b,c∈R.
(1)计算f′(
1
3
);
(2)若x=
1
3
为函数f(x)的一个极值点,求f(x)的单调区间;
(3)设M表示f′(0)与f′(1)两个数中的最大值,求证:当0≤x≤1时,|f′(x)|≤M.

查看答案和解析>>

同步练习册答案