精英家教网 > 高中数学 > 题目详情
15.已知圆(x+1)2+y2=2,则其圆心和半径分别为(  )
A.(1,0),2B.(-1,0),2C.$(1,0),\sqrt{2}$D.$(-1,0),\sqrt{2}$

分析 利用圆的标准方程的性质求解.

解答 解:圆(x+1)2+y2=2的圆心为(-1,0),
半径为$\sqrt{2}$.
故选:D.

点评 本题考查圆的圆心坐标和半径的求法,是基础题,解题时要认真审题,注意圆的标准方程的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.函数f(x)=sin(2x+$\frac{π}{3}$),图象的对称中心为(k∈z)(  )
A.($\frac{kπ}{2}$-$\frac{π}{6}$,0)B.($\frac{kπ}{2}$-$\frac{π}{12}$,0)C.(kπ-$\frac{π}{6}$,0)D.(kπ+$\frac{π}{12}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图所示,最左边的几何体由一个圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得,现用一个竖直的平面去截这个几何体,则截面图形可能是(  )
A.①②B.②③C.③④D.①⑤

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知直线l的方程为x-my+2=0,则直线l(  )
A.恒过点(-2,0)且不垂直x轴B.恒过点(-2,0)且不垂直y轴
C.恒过点(2,0)且不垂直x轴D.恒过点(2,0)且不垂直y轴

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设从点P(a,b)分别向椭圆$\frac{{x}^{2}}{4}$+y2=1与双曲线x2-$\frac{{y}^{2}}{4}$=1作两条切线PA,PB,PC、PD切点分别为A,B,C,D,若AB⊥CD,则$\frac{b}{a}$=(  )
A.±4B.1C.4D.±1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知l1:y=k1x+b1,l2:y=k2x+b2,命题p:“若l1⊥l2,则k1k2=-1”的逆否命题是若k1k2≠-1,则l1与l2不垂直,原命题p为真命题.(填“真”或“假”)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图所示,三棱柱ABC-A1B1C1中,CC1⊥平面ABC,△ABC是边长为2的等边三角形,D为AB边的中点,且CC1=2AB.
(Ⅰ)求证:AC1∥平面CDB1
(Ⅱ)求点B到平面B1CD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.袋中有形状、大小都相同的4只球,其中2只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=sinx,$g(x)=\left\{\begin{array}{l}-\;\frac{1}{x},\;\;x<0\\ lgx,\;\;\;x>0\end{array}\right.$,则函数h(x)=f(x)-g(x)在区间[-2π,4π]内的零点个数为5.

查看答案和解析>>

同步练习册答案