精英家教网 > 高中数学 > 题目详情
已知函数(a、b∈R),
(Ⅰ)若f(x)在R上存在最大值与最小值,且其最大值与最小值的和为2680,试求a和b的值;
(Ⅱ)若f(x)为奇函数:
(1)是否存在实数b,使得f(x)在为增函数,为减函数,若存在,求出b的值,若不存在,请说明理由;
(2)如果当x≥0时,都有f(x)≤0恒成立,试求b的取值范围.
【答案】分析:(I)第一问根据函数解析式的特征可以判断b=0,再把函数变形后利用三角函数有界性来求解出函数的最值.
(II)第二问利用f(x)为奇函数求出a=0(1)中因为x=是函数的极值即得出b=0(2)先判断函数的单调性再利用其求出函数最值.
解答:解:(Ⅰ)∵f(x)在x∈R上存在最大值和最小值,
∴b=0(否则f(x)值域为R),
⇒3y2-4ay+a2-1≤0,
又△=4a2+12>0,由题意有
∴a=2010;
(Ⅱ)若f(x)为奇函数,∵x∈R,∴f(0)=0⇒a=0,

(1)若?b∈R,使f(x)在(0,)上递增,在(,π)上递减,

∴b=0
并且当时,f'(x)>0,f(x)递增,
时f'(x)<0,f(x)递减,
∴当b=0时满足题意.
(2)①
△=4[(1-2b)2+b(1-4b)]=4(1-3b)
若△≤0,即,则f'(x)≤0对?x≥0恒成立,这时f(x)在[0,+∞)上递减,
∴f(x)≤f(0)=0,
②若b<0,则当x≥0时,-bx∈[0,+∞),不可能恒小于等于0,
③若b=0,则不合题意,
④若
,f'(π)=-b-1<0,
∴?x∈(0,π),使f'(x)=0,x∈(0,x)时,f'(x)>0,
这时f(x)递增,f(x)>f(0)=0,不合题意,
综上
点评:导数解三角函数题目,不仅方法新颖,而且简单易懂,便于掌握.常见的三角函数有关的极(最)值、三角函数的单调性若能从导数这一角度去考虑将给我们展示一种全新的视野.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数(a,b∈R),其图象在点(1,f(1))处的切线方程为x+y﹣3=0.

(1)求a,b的值;

(2)求函数f(x)的单调区间和极值;

(3)求函数f(x)在区间[﹣2,5]上的最大值.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖北省黄冈市黄州一中高三(上)9月月考数学试卷(解析版) 题型:解答题

已知函数(a,b∈R)
(1)若y=f(x)图象上的点处的切线斜率为-4,求y=f(x)的极大值;
(2)若y=f(x)在区间[-1,2]上是单调减函数,求a+b的最小值.

查看答案和解析>>

科目:高中数学 来源:《第1章 导数及其应用》2010年单元测试卷(3)(解析版) 题型:解答题

已知函数(a,b∈R)
(1)若y=f(x)图象上的点处的切线斜率为-4,求y=f(x)的极大值;
(2)若y=f(x)在区间[-1,2]上是单调减函数,求a+b的最小值.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年江苏省苏州市六校联合高三调研数学试卷(解析版) 题型:解答题

已知函数(a、b∈R),
(Ⅰ)若f(x)在R上存在最大值与最小值,且其最大值与最小值的和为2680,试求a和b的值;
(Ⅱ)若f(x)为奇函数:
(1)是否存在实数b,使得f(x)在为增函数,为减函数,若存在,求出b的值,若不存在,请说明理由;
(2)如果当x≥0时,都有f(x)≤0恒成立,试求b的取值范围.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年江苏省南通市海安高级中学高三(下)3月月考数学试卷(理科)(解析版) 题型:解答题

已知函数(a、b∈R),
(Ⅰ)若f(x)在R上存在最大值与最小值,且其最大值与最小值的和为2680,试求a和b的值;
(Ⅱ)若f(x)为奇函数:
(1)是否存在实数b,使得f(x)在为增函数,为减函数,若存在,求出b的值,若不存在,请说明理由;
(2)如果当x≥0时,都有f(x)≤0恒成立,试求b的取值范围.

查看答案和解析>>

同步练习册答案