分析 求出$\frac{a}{2x}$+$\frac{b}{2y}$=1,利用乘“1”法,求出代数式的最小值即可.
解答 解:∵a,b为正常数,x,y为正实数,且$\frac{a}{x}+\frac{b}{y}=2$,
∴$\frac{a}{2x}$+$\frac{b}{2y}$=1,
∴(x+y)($\frac{a}{2x}$+$\frac{b}{2y}$)
=$\frac{a+b}{2}$+$\frac{bx}{2y}$+$\frac{ay}{2x}$
≥$\frac{a+b}{2}$+2$\sqrt{\frac{bx}{2y}•\frac{ay}{2x}}$
=$\frac{a+b}{2}$+$\sqrt{ab}$,
当且仅当x2=$\frac{a}{b}$y2时“=”成立,
故答案为:$\frac{a+b}{2}$+$\sqrt{ab}$.
点评 本题考查了乘“1”法的应用,考查基本不等式的性质,是一道基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com